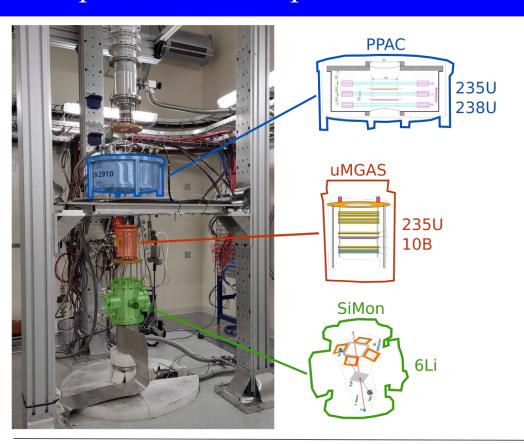
Status of EAR2 neutron flux evaluation for n_TOF-Phase4

n_TOF Collaboration meeting 13.12.2022, Edinburgh

J.A. Pavón-Rodríguez, S.Amaducci, A. Manna, M. Bacak, F. García-Infantes, N. Kyritsis, E. Musacchio, N. Patronis, M. Sabaté-Gilarte, M.E. Stamati


Table of Contents

- Experimental Setup
- Highlights of Data Analysis for all detectors
- Flux from all data sets
- Evaluated EAR2 flux
- Summary and Next milestones

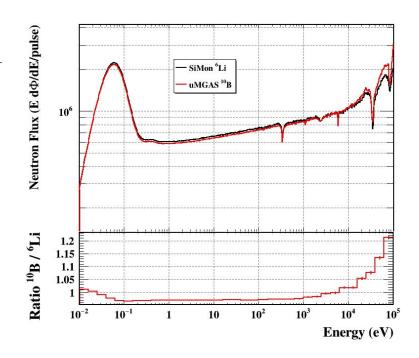
Experimental Setup

The setup to measure the neutron flux consisted of solid state detectors (SiMon) and gas detectors (uMGAS, PPAC), employing (n, charged-particles) and (n,f) reactions on samples considered as standard.

Detector	Sample		
SiMon	⁶ Li(n,α)t		
uMGAS	10 B $(n,\alpha)^{7}$ Li 235 U (n,f)		
PPAC	238 U(n,f) 235 U(n,f)		

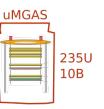
Data Analysis: SiMon ⁶Li

Analysis status Flux results **Comments** ⁶Li **Corrections** Implementation of the TC Flux (E d\P/dE/Pulse) in the data analysis to not calibrated Flight Path for the RF account with RF on-going. 10^6 **PSA** processing Gain Shift S.Amaducci Transmission SiMon $10 \quad 10^2 \quad 10^3 \quad 10^4 \quad 10^5$ $10^{-2} \ 10^{-1}$ Efficiency Energy (eV) 6Li Pile-up



Data Analysis: uMGAS ¹⁰B

Analysis status


Flux results

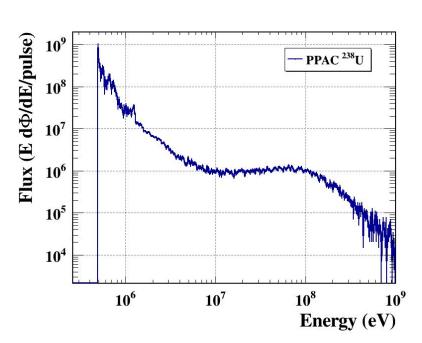
Comments

Saturated γ-flash in ¹⁰B limits the energy range up to 1 keV. Bug in the ntoflib found, disabling PSA features for saturated pulses, necessary to reconstruct and an accurate t-flash in this energy region.

JA.Pavon-Rodriguez

Data Analysis: uMGAS ²³⁵U

Analysis status Flux results **Comments** Neutron Flux (E d\Psi/dE/pulse) ²³⁵U — SiMon ⁶Li Corrections uMGAS 235U Improvement needed in Flight Path MC simulations for 10^{6} efficiency the in **PSA** processing amplitude cut. Gain Shift Transmission Ratio ²³⁵U HI / ⁶Li 1.08 1.06 1.04 JA.Pavon-Rodriguez 1.02 Efficiency uMGAS 0.98 Pile-up 0.94 235U 10^{-2} 10^{-1} 10^2 10^3 10^{4} 10 10B t₀ correction Energy (eV) at E > 1 MeV



Data Analysis: PPAC ²³⁸U

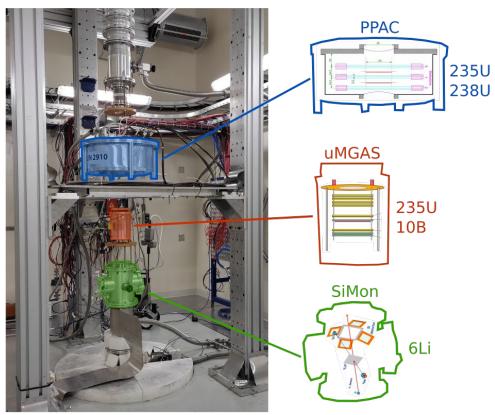
Analysis status

238U **Corrections** Flight Path **PSA** processing Gain Shift N/A Transmission Efficiency Pile-up N/A

Flux results

Comments

First results for PPAC ²³⁸U. Flight path calibrated with TC and t₀ calibrated with ²³⁸U xs in TOF.



Experimental Setup

Samples used for each energy range of the evaluation presented in this meeting:

Energy range _ [eV]	SiMon µMGAS		PPAC		
	⁶ Li	¹⁰ B	²³⁵ U	²³⁵ U	²³⁸ U
2 x 10 ⁻³ - 2 x 10 ⁻²	×	Ø	Ø	×	×
$2 \times 10^{-2} - 1 \times 10^{3}$			×	×	X
$1 \times 10^3 - 1 \times 10^5$		X		×	X
$1 \times 10^5 - 2 \times 10^6$	×	X		×	×
2 x 10 ⁶ - 2.7 x 10 ⁶	×	×		×	
2.7 x 10 ⁶ - 1 x 10 ⁹	×	X	×	×	
	[eV] 2 x 10 ⁻³ - 2 x 10 ⁻² 2 x 10 ⁻² - 1 x 10 ³ 1 x 10 ³ - 1 x 10 ⁵ 1 x 10 ⁵ - 2 x 10 ⁶ 2 x 10 ⁶ - 2.7 x 10 ⁶	Energy range [eV] 6Li 2 x 10 ⁻³ - 2 x 10 ⁻² 2 x 10 ⁻² - 1 x 10 ³ 1 x 10 ³ - 1 x 10 ⁵ 1 x 10 ⁵ - 2 x 10 ⁶ 2 x 10 ⁶ - 2.7 x 10 ⁶	Energy range [eV] 6Li 10B 2 x 10 ⁻³ - 2 x 10 ⁻² 2 x 10 ⁻² - 1 x 10 ³ 1 x 10 ³ - 1 x 10 ⁵ 1 x 10 ⁵ - 2 x 10 ⁶ 2 x 10 ⁶ - 2.7 x 10 ⁶ X	Energy range [eV] 2 x 10 ⁻³ - 2 x 10 ⁻² 2 x 10 ⁻² - 1 x 10 ³ 1 x 10 ³ - 1 x 10 ⁵ 2 x 10 ⁶ - 2.7 x 10 ⁶ 2 x 10 ⁶ - 2.7 x 10 ⁶ 2 x 10 ⁶ - 2.7 x 10 ⁶ 3 C	Energy range [eV] 6Li 10B 235U 235U 235U 2 x 10 ⁻³ - 2 x 10 ⁻² X 2 x 10 ⁻² - 1 x 10 ³ X 1 x 10 ³ - 1 x 10 ⁵ X 2 x 10 ⁶ - 2.7 x 10 ⁶ X X Comparison of the comparison of t

EAR2 evaluation

Weighted sum

The different data sets have been combined in energy, as weighted sum of them, where the weight is the statistical uncertainty of the data, having a bigger relevance those data with better statistics.

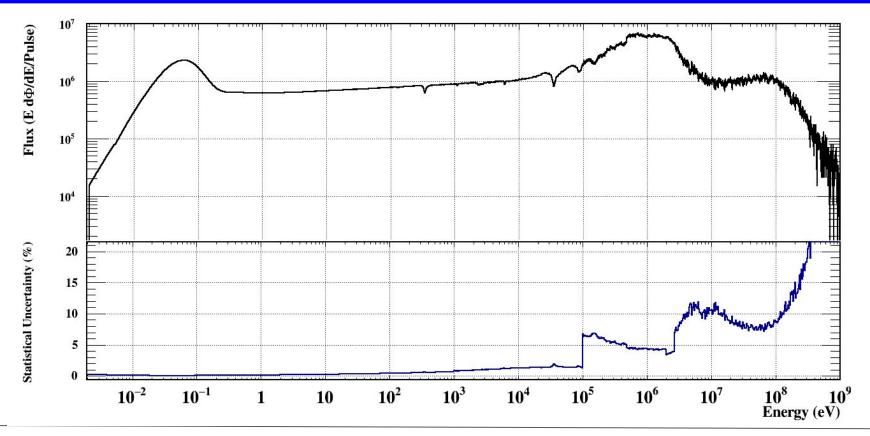
$$y = \frac{\sum_{i} \left(\frac{y_i(E)}{\Delta y_i(E)^2}\right)}{\sum_{i} \left(\frac{1}{\Delta y_i(E)^2}\right)} \quad \sigma_y = \left(\sqrt{\sum_{i} \left(\frac{1}{\Delta y_i(E)^2}\right)}\right)^{-1}$$

TOF to E conversion

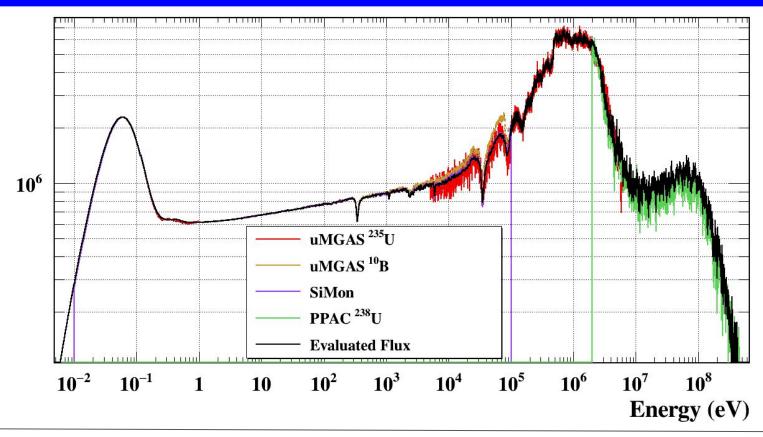
The criterion applied for the TOF to E conversion in the different data sets is the use of an effective flight path, including an average effect of the resolution function. Therefore:

$$L(TOF) = L_0 + \lambda^{eff}(TOF) = L_0 + \lambda^{eff}_{const} = L_{const}$$

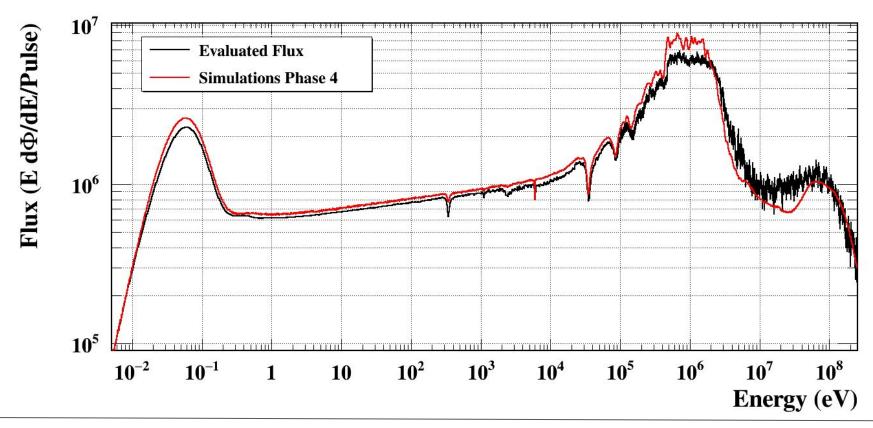
Normalisation of data sets

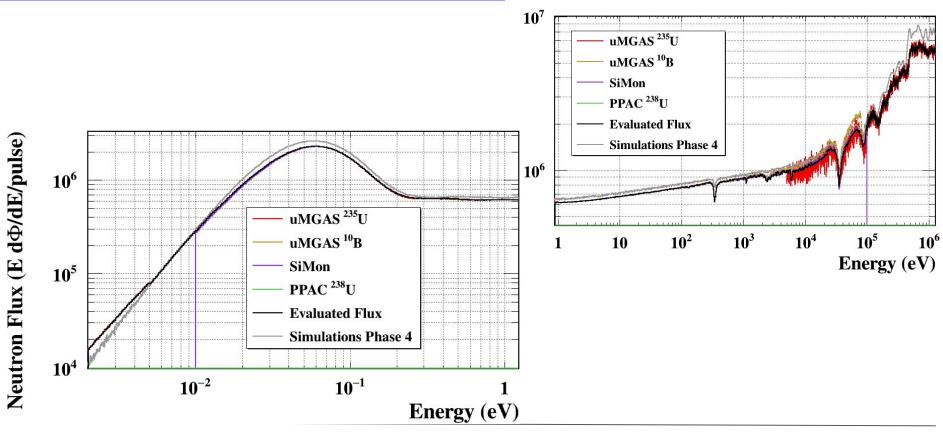

All data sets have been normalised when possible to the integral of 235U data set between 7.8 eV and 11 eV.

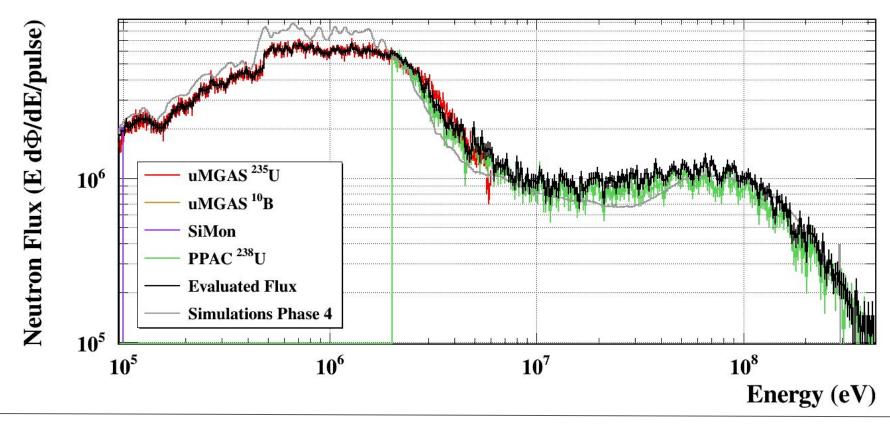
EAR2 evaluated flux

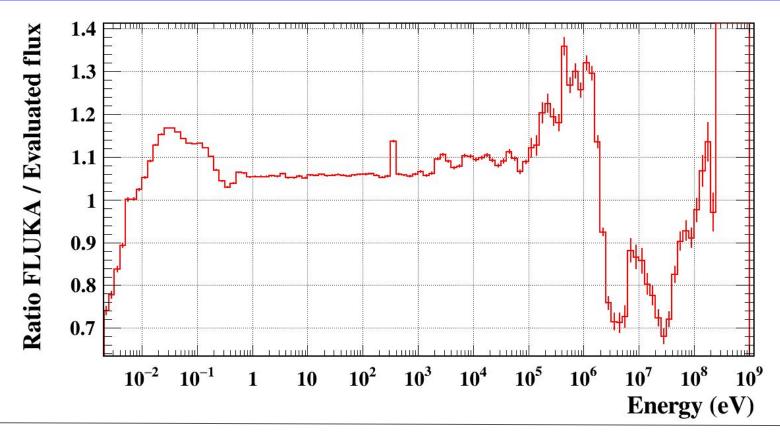


EAR2 evaluated flux and data sets




EAR2 evaluated flux and simulations


EAR2 evaluated flux and data sets


EAR2 evaluated flux and data sets

EAR2 evaluated flux and simulations

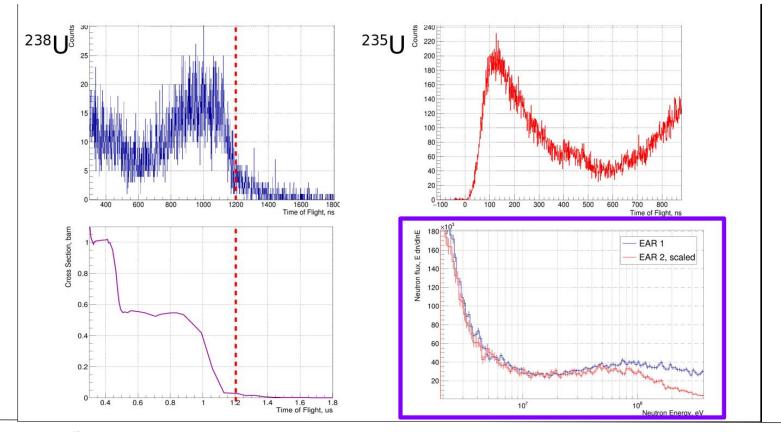
Summary

- The experimental neutron flux measured with the three detector systems used during the commissioning campaign in EAR2 was presented.
- A first evaluation of the flux has been carried out. Up to 100 keV, all energy ranges rely on two different detector systems/samples, which are in agreement within a 5 %. In this range, the statistical uncertainty remains below a 2 %.
- Support from ntoflib group is needed to extend ¹⁰B energy range.
- From 1 keV to 2 MeV, the flux relies only on uMGAS ²³⁵U.
- First results for PPAC ²³⁸U above 2 MeV were presented.
- Data analysis for SiMon and uMGAS is close to be finished.
- A comparison with FLUKA simulations shows a similar shape in the epithermal region, while thermal and higher energy ranges require a better understanding.

Outlook

- Finalsing detector analysis:
 - **Deadline**: for final data reduction for all detectors is **mid February**.
- First final evaluation expected by end of **February 2023**.
- Final flux evaluation by **end of March 2023**.

Thank you!


Backup slides

$PPAC^{238}Ut_0$

