

Experimental validation of the Resolution Function @ EAR2

J. Lerendegui, V. Alcayne, J.A. Pavón on behalf of the Resolution Function -WG

n_TOF Collaboration Meeting, Edinburgh, 13-14 Dec 2022

RF @ EAR2: Outline

Review of status of last meetings

Links:

Nov '21 (JLM) May '22 (ND2022, JAP)

Recent progress in the data analysis

RF from FLUKA simulations & transport code

Analysis with SAMMY

Results of the validation

Data for the RF @ EAR2: 500 meV - 30 keV

Setup #1: Detectors at 30 cm

Setup #2: Detectors at 15 cm

Data for the RF @ EAR2: Setup #1

SETUP #1: detectors at 30 cm

Validation of RF up to 60-600 eV

Data for the RF @ EAR2: Setup #2

Validation of RF >500 eV

SBR and statistics were limited for Fe-nat

RF @ EAR2: 2015 vs 2021

Normalized to the area of each resonance to compare the shape

Despite the non-final analysis, the improvement in terms of RF seems clear in different energy ranges

RF @ EAR2: Status @ last meeting

- (n,g) measurements at EAR2 → RRR in the energy range from 0.5eV to 30 keV.
- Two different setups :
 - Ensure the correct performance of the detectors in terms of C. rates.
 - Sufficient S/B ratio for the samples with resonances in the keV range.
- Up to now: Preliminary analysis & PSA parameters improvement.
- (n,g) data ready to validate the RF in a wide energy range.
- Comparison 2015: RF improved & (now) no significant shape change with small samples.
- Additional: Preliminary confirmed 2-3mm shift of the center of the beam for low energies.
- Final analysis and yield extraction: Preliminary flux shape is required (already available but not yet done)
- FLUKA + MNCP (now FLUKA v.4.3) simulations have been improved and massive production are launched
- After simulations are ready: Validation (Time depends on the level of agreement)
 - Direct comparison Exp data vs (n,g) TOF yield from transport code
 - Numerical RF to SAMMY

RF @ EAR2: Outline

Review of status of last meeting

Recent progress in the data analysis

RF from FLUKA simulations & transport code

Analysis with SAMMY

Results of the validation

RF @ EAR2: Progress in data analysis / quality

• Final analysis and yield extraction with preliminary flux shape

RF @ EAR2: Progress in data analysis / quality

n_TOF Collaboration Meeting, Edinburgh, 13-14 Dec 2022

RF @ EAR2: Outline

Review of status of last meeting

Recent progress in the data analysis

• RF from FLUKA simulations & transport code

Analysis with SAMMY

Results of the validation

RF @ EAR2: Experiment vs Transport code

Background subtracted c. rates vs TOF vs FLUKA simulations + T. Code

- Extract the flightpath for the RF
- first validation of the RF vs experimental data

Geometrical flightpath (TC) = 19.81 m + preliminary validation of the RF \rightarrow good agreement between data & calculation in shape and the tail

RF @ EAR2: Outline

Review of status of last meeting

Recent progress in the data analysis

RF from FLUKA simulations & transport code

Analysis with SAMMY

Results of the validation

RF @ EAR2: Progress in data analysis / quality

Fe-nat re-measured in 2022 with STEDs for higher SBR

- Same setup than Nb-94,Se-79 campaigns
- 9 sTEDs @ 4.5 cm
- 2 C6D6 @ 17 cm
- 1 LaCl3 @ 9 cm

2022 RF Fe-nat measurement :

20 x 2 mm sample mounted on ⁷⁹Se empty (2021: 20 x 1 mm)

Setup with enhanced efficiency and SBR to improve the quality of the Fe-nat data for the RF @ 10-100 keV

RF @ EAR2: Progress in data analysis / quality

• Fe-nat re-measured in 2022 with STEDs for higher SBR:

RF @ EAR2: Analysis with SAMMY

1) Prepared input files and data files in SAMMY format: JEFF-3.3 (+ N. Sosnin et al. for ⁷⁷Se)

- RF WORK DIRECTORY: /eos/experiment/ntof/2021_Commissioning/RF/
- 2) RF (lambda vs E_n) @ 19.81 m (TC)→ SAMMY (RF2Sammy, F. Gunsing)
- 3) Calculation with SAMMY with Final RF (200 bpd En, 0.1 cm bin_L) + Data from RF campaign (2500 bpd)

/eos/experiment/ntof/2021_Commissioning/RF/RF2samm yFolder/EAR2 RF FLUKAv4.3 all statistics.root

RF @ EAR2: Analysis with SAMMY

- 1) Prepared input files and data files in SAMMY format
- 2) RF (lambda vs E_n) \rightarrow SAMMY (RF2Sammy, F. Gunsing)

RF WORK DIRECTORY: /eos/experiment/ntof/2021_Commissioning/RF/

- 3) Calculation with SAMMY with Final RF (200 bpd En, 0.1 cm bin_L) + Data from RF campaign (2500 bpd)
- 4) Adjust with SAMMY L₀:
 - a) L_0 initial (used for t2e) = 19.51 m
 - b) L₀ fitted with SAMMY

Adjusted L₀: 19.484 eV

Need to fit down to mm!

RF @ EAR2: Analysis with SAMMY

- 1) Prepared input files and data files in SAMMY format
- 2) RF (lambda vs E_n) \rightarrow SAMMY (RF2Sammy, F. Gunsing)

RF WORK DIRECTORY: /eos/experiment/ntof/2021_Commissioning/RF/

- 3) Calculation with SAMMY with Final RF (200 bpd En, 0.1 cm bin_L) + Data from RF campaign (2500 bpd)
- 4) Adjust with SAMMY L_0 :
 - a) L_0 initial (used for t2e) = 19.51 m
 - b) L_0 fitted with SAMMY

Adjusted L₀: 19.484 eV

- 5) Redone the t2e calibration with the adjusted L_0
- 6) Check with SAMMY \rightarrow Multiplicative factor of L₀ =1
 - a) Multiplication factor fitted with SAMMY

Fitted L₀ value agrees within 2mm for various ranges

RF @ EAR2: Outline

Review of status of last meeting

Recent progress in the data analysis

RF from FLUKA simulations & transport code

Analysis with SAMMY

Results of the validation

RF @ EAR2: Impact of the RF in SAMMY

¹⁹⁷Au (n,g): SAMMY with vs without RF compared to the experimental data (L₀ adjusted = 19.484 m)

- Shifting energy

SAMMY recompiled to avoid shifting the RF to lambda mean = 0

comment line 265 of sammy/src/udr/mudr3.f Udt E(J,Nud) = Udt E(J,Nud) - Ct -

¹⁹⁷Au (n,g): yield normalized between 100 and 250 eV, L₀ =19.484m (adjusted), RF not shifted by SAMMY

¹⁹⁷Au (n,g): yield normalized between 100 and 250 eV, L₀ =19.484m (adjusted), RF not shifted by SAMMY

²³⁸U (n,g): yield normalized between 5 and 100 eV, L₀ =19.484m (adjusted with Au), RF not shifted by SAMMY

²³⁸U (n,g): yield normalized between 5 and 100 eV, L₀ =19.484m (adjusted with Au), RF not shifted by SAMMY

n_TOF Collaboration Meeting, Edinburgh, 13-14 Dec 2022

Validation with ¹⁹⁷Au(n,g) and ²³⁸U(n,g) up to 600 eV:

- Energy shift of resonances is fairly reproduced → Deviation SAMMY+RF vs experiment equivalent to ΔL~mm
- Shape of the resonance tails (RF) good reproduced.
- In large resonances and at higher energies → overestimation of peak counts in the calculation
 - RF does reproduce the shape?
 - Non-corrected dead time? → Check & correct with STED data ⁷⁹Se campaign (parasitic bunches) (2022)

RF @ EAR2: Summary & outlook

- Summary:
- Data from few eV up to several tenths of keV. Data quality improved in 2022 with a new measurement of Fe-nat with STEDs.
- FLUKA simulations + Transport \rightarrow Adjusting the flightpath to extract the RF @ sample position \rightarrow 19.81 m
- Final RF of EAR2 with full statistics is now available.
- First validation with SAMMY: $L_0 = 19.48$ m adjusted in the energy range 1-200 eV
- Results for ¹⁹⁷Au and ^{nat}: good/fair agreement in the shape up to 500 eV but energy shift is not fully reproduced.
- Next steps:
- Understand the small deviation in the resonance energy after adjusting L₀ → RF or methodology with SAMMY?
- Complete the validation with ^{nat}Ir, ⁷⁷Se and ^{nat}Fe: narrow and isolated resonances <10eV and > 1keV.
- Check if experimental effects such as **dead time** can have an influence to reproduce shape around the maximum. The data of STEDs of 2022 & parasitic bunches will be useful for this purpose.
- Calculate the RF for different small misalignments and check the possible impact in the agreement.

THANK YOU FOR YOUR ATTENTION!

