

Off-beam neutron background at NEAR: Status and plans

J. Lerendegui-Marco, M. Bacak, Z. Eleme, N. Patronis, C. Domingo-Pardo et al.

Outline

- **Review Motivation:** Cyclic activation station for (n,g) measurements at NEAR
- Summary simulations of the off-beam neutron background:
 - Initial situation
 - Improving the n-background conditions
- Experimental campaign with CR-39:
 - First experiment, and results vs simulations
- Next steps:
 - Improving the knowledge with simulations and measurements (CR39)
 - Development & plans for campaign with active detectors
- Summary and outlook

Motivation: Cyclic activation station

Up to now: Activations via days-long irradiation + transport to HPGe @ GEAR:

- E. Stamati et al., <u>CERN-INTC-2022-008</u>; <u>INTC-P-623</u>
 (2022): benchmark with long-lived (n,g) products
- Not able to measure activation with short lived (seconds, minutes) (n,g) reaction products

Motivation: Cyclic activation station

Up to now: Activations via days-long irradiation + transport to HPGe @ GEAR:

- E. Stamati et al., <u>CERN-INTC-2022-008</u>; <u>INTC-P-623</u>
 (2022): benchmark with long-lived (n,g) products
- Not able to measure activation with short lived (**seconds, minutes**) (n,g) reaction products.

Setup at FZK 3.75MV Van de Graaff

Motivation: Cyclic activation station

Up to now: Activations via days-long irradiation + transport to HPGe @ GEAR:

- E. Stamati et al., <u>CERN-INTC-2022-008</u>; <u>INTC-P-623</u>
 (2022): benchmark with long-lived (n,g) products
- Not able to measure activation with short lived (**seconds, minutes**) (n,g) reaction products.

CYCLING: CYCLIc activation station for (N,G) measurements at NEAR

Rabbit systems may be an alternative / complementary solution!

Setup at FZK 3.75MV Van de Graaff

Requisites

- Beam period: Rep. rate of n_TOF (max 0.8 Hz) is well suited for short lived (seconds)
- Operate a high resolution g-ray detector (ideally HPGe) in the harsh radiation environment in the NEAR bunker

Experimental conditions at n_TOF NEAR

1.- MC study for first feasibility study & optimize the background conditions

Input: FLUKA simulations 100x100 cm scorer (interface marble-concrete)

2nd step Simulation: Carried out with Geant4 10.7.p02 + Physics List with **G4NeutronHP** for the high accuracy transport of neutrons below 20 MeV

Experimental conditions at n_TOF NEAR

1.- MC study for first feasibility study & optimize the background conditions

2.- Experimental campaign: neutron & g-ray detectors (Lol submitted INTC June)

Input: FLUKA simulations 100x100 cm scorer (interface marble-concrete)

2nd step Simulation: Carried out with Geant4 10.7.p02 + Physics List with **G4NeutronHP** for the high accuracy transport of neutrons below 20 MeV

Measurement of the radiation background at the n_TOF NEAR facility to study the feasibility of cyclic activation experiments

May 4, 2022

J. Lerendegui-Marco¹, M. Bacak², V. Alcayne³, D. Cano-Ott³, A. Casanovas⁴, G. Cortés⁴, C. Domingo-Pardo¹, C. Guerrero⁵, C. Massimi^{6,7}, E. Mendoza³, A. Mengoni⁸, A. Musumarra⁶, N. Patronis⁹, A. Tarifeno-Saldivia¹, and the n_TOF Collaboration¹⁰

Outline

- Review Motivation: Cyclic activation station for (n,g) measurements at NEAR
- Summary simulations of the off-beam neutron background:
 - Initial situation
 - Improving the n-background conditions
- Experimental campaign with CR-39:
 - First experiment, and results vs simulations
- Next steps:
 - Improving the knowledge with simulations and measurements (CR39)
 - Development & plans for campaign with active detectors
- Summary and outlook

Geant4 simulations of the background

760

Input: Latest FLUKA simulations provided by Matteo

1 m radius scoring between concrete and the marble

Results: in-beam flux (2) and the off-beam positions with the minimum neutron flux (5, 15, 19)

Simulations n-background @ NEAR

Initial situation: Minimum off-beam flux (SD 5,15,19) is similar to that of EAR1 (in-beam) or in-between EAR1 and EAR2

Simulations n-background @ NEAR

Initial situation: Minimum off-beam flux (SD 5,15,19) is similar to that of EAR1 (in-beam) or in-between EAR1 and EAR2 neutron fluence far from the beam?

Improving the n-background?

nTOF

Scorer #

x15 Û

x18

Flux reduction in relevant positions \rightarrow 15-20

Outline

- Review Motivation: Cyclic activation station for (n,g) measurements at NEAR
- Summary simulations of the off-beam neutron background:
 - Initial situation
 - Improving the n-background conditions
- Experimental campaign with CR-39:
 - First experiment, and results vs simulations
- Next steps:
 - Improving the knowledge with simulations and measurements (CR39)
 - Development & plans for campaign with active detectors
- Summary and outlook

Proposed setup & plan

Characterization of the **neutron and \gamma-ray field in positions of interest** for the CYCLING station will be carried out with different **active** and **passive** detectors:

and a second	1000	sensitivity			
system type	stem type	neutrons	γ -rays	comment	
CR39	passive	thermal / fast	no	2 -	
Diamond	active	thermal – fast	yes	n/γ discrimination	
TARAT	active	fast	yes	n/γ discrimination and energy resolved	
LaBr ₃	active	no	yes	potential final detector	
BC501	active	fast	yes	n/γ discrimination	
³ He3	active	thermal – fast	no	855732 8 4	

Experimental campaing

1) 2022: CR-39 passive dosimeters

First comparison with the simulations \rightarrow Are they realistic so far?

2) 2023: Active detectors

- Prior installation of equipment at NEAR
- Background reduction components may be added

Exp. campaign with CR-39: Setup #1

		DISTANCE I	FROM COLLI	MATOR EXIT
XP. ID#	GEANT4 ID#	x (cm)	y (cm)	z (cm)
A	5	300	0	0
В	19	300	0	Z_bunker /2
С	15	X_bunker	0	Z_bunker
D	9	200	-1	0
E	4	200	0	0
F	13	200	1	0

E

Exp. campaign with CR-39: Setup #1

NTOF

Simulations: Calculation No. Tracks

Fluence x Efficiency

CR-39 Exp. vs simulations? Validation EAR1/2

Validation: results using	EAR	Flux(>50 keV)	Flux x Eff	Tracks / pulse	Total Protons	Total tracks
Evaluated Flux Ph3	EAR1	3.17E+05	95.40	7.2	9.37E+16	7183.12
+ Eff. curve	EAR2	1.26E+07	3332.43	249.9	1.40E+16	37489.8

Calculated #tracks for EAR2/EAR1

tracks/pulse = efficiency x neutrons/pulse x optical factor (field/step)

TRACKS	/PULSE ("captu	re" collimator)
	Experiment	Calculation (MC-Efficiency ≭ Evaluated FLUX)
EAR1	7	7
EAR2	170	238
Tracks Ratio (EAR2/ EAR1)	24	34

Consistent results within the accuracy of the method (~30% uncertainty)

Good agreement with N. Patronis, *EAR1 & EAR2 Beam Profile Using CR39 detectors*, Collab meeting Madrid, 2017

EAR1 "capture" collimator

- Well centered beam (within 1 mm)
- FWHM (left to right): 15.5 mm
- FWHM (floor to ceiling): 17.2 mm
- Protons: 0.937 · 1017
- # tracks (net area): 0.94 · 105

EAR2 "capture" collimator

Previous results

- Well centered beam (within 2-3 mm)
- FWHM (west to east): 23 mm
- FWHM (north to south): 21 mm
- Beam diameter at sample holder: ~40 mm
- Protons: 1.4 · 10¹⁶
- # tracks: 3.4 · 10⁵

Fair match with Exp. total tracks (Net A) Tracks/bunch x No. bunches

CR39 Exp. vs simulations? Results NEAR

AVERAGE	CR-39 position	Experimental	Sim. Fluence	Sim. Flux
A	A	1760	150	80
B_1	B_1	1883	160	72
B_2	B_2	1980	160	72
С	С	2376	38	14
D	D	1596	221	134
E	E	1925	249	155
F	F	1629	212	128

RATIO TO A	Experimental	Simulations
A	1.000	1.00
B_1	1.070	1.07
B_2	1.125	
С	1.350	0.25
D	0.907	1.47
E	1.094	1.66
F	0.926	1.42

European

erc Research Council

RATIO TO E	Experimental	Simulations
А	0.914	0.60
B_1	0.979	0.64
B_2	1.029	
С	1.235	0.15
D	0.83	0.89
E	1.000	1.00
F	0.85	0.85

80	11.742
72	11.764
72	12.367
14	62.316
134	7.228
155	7.732
128	7.680

RATIO fluence

Absolute numbers are at least a factor 7 wrong!

Analysis CR39: Zina Eleme

- Ratio A/B, F/E & D/E are fairly good reproduced.
- Neutron fluence vs X decreases in simulations but remains stable or increases experiment → Indication: important sources of neutrons along the wall?

Outline

- Review Motivation: Cyclic activation station for (n,g) measurements at NEAR
- Summary simulations of the off-beam neutron background:
 - Initial situation
 - Improving the n-background conditions
- Experimental campaign with CR-39:
 - First experiment, and results vs simulations

• Next steps:

- Improving the knowledge with simulations and measurements (CR39)
- Development & plans for campaign with active detectors
- Summary and outlook

Next steps: Understanding the CR39 results

Checks up to now:

- Error in the simulation? (primaries, normalization, resampling, ...) $\rightarrow NO$
- Efficiency of the CR-39 \rightarrow **Isotropic neutron field vs n-beam** does not change > 60-80% \rightarrow **NO**
- Error in the calculation \rightarrow No. tracks are consistent with NEAR fluences vs EAR1 /EAR2 \rightarrow NO

- Neutron flux at the exit of the marble agrees with the latest FLUKA results \rightarrow No error in the simulations.
- Additional sources (whole shielding wall) are needed to reproduce the flux far from the collimator.

Next steps: Understanding the CR39 results

Checks up to now:

- Error in the simulation? (primaries, normalization, resampling, ...) $\rightarrow NO$
- Efficiency of the CR-39 \rightarrow Isotropic neutron field vs n-beam does not change > 60-80% \rightarrow NO
- Error in the calculation \rightarrow No. tracks are consistent with NEAR fluences vs EAR1 /EAR2 \rightarrow NO

Next steps: Second experimental campaign with CR39 (finished, not yet analyzed)

- CR 39s at the gap located at the end of the shielding \rightarrow Important n-source?
- CR39s at collimator \rightarrow neutron beam \rightarrow Check if reproduced by simulations (as EAR1 and EAR2)
- Response of the CR-39 without PE converter (neutrons & other particles) and with PE on either side

Next steps: Understanding the CR39 results

n emission not only from collimator + not homogenous → →Consistent with the larger discrepancy far from the collimator

Next steps: More realistic FLUKA Input

- Improving the knowledge on the geometry
- New scoring plane (USERDUMP surface) to be used instead of the current (USERDUMP)
- Simulations already finished (by Matteo, available since one week only)

Outline

- Review Motivation: Cyclic activation station for (n,g) measurements at NEAR
- Summary simulations of the off-beam neutron background:
 - Initial situation
 - Improving the n-background conditions
- Experimental campaign with CR-39:
 - First experiment, and results vs simulations

• Next steps:

- Improving the knowledge with simulations and measurements (CR39)
- Development & plans for campaign with active detectors
- Summary and outlook

Technical requirements: Status

DACQs, signals & HV (Michi):

Long cables available and tested for noise / losses ✓

- DAQs:
 - a. Some detectors may have standalone DAQs \checkmark
 - b. n_TOF DACQ with SPD:
 - i. hardware is available (in pieces): need to assemble (YETS)
 - ii. card swaps between the DACQs: to be done (YETS)
 - iii. set up of the software to accept a 4th DACQ: to be done (YETS)
- **PS Trigger**: to be done (**YETS**)

Patch panel NEAR: 2x ~100 m connections

Cables for tests @ e-Lab

Technical requirements: Status

DACQs, signals & HV (Michi)

Access to NEAR: Discussed with RP

- Max. cool-down time after hours of beam : 4 hours
- If only 2 min of beam \rightarrow Cool-down time reduced to 30 min

Shielding elements 1st campaign with active detectors:

- Borated PE layers & Lead bricks (detector dependent)
- Extra Collimator in the marble hole \rightarrow Possible to be prepared in the **YETS**
- Other possible shielding elements under study

Setups and planning: Status

Detector availability & requirements:

- **TARAT:** Detector at CERN, mobile CAEN digitizer. Contact: A. Musumarra.
- **Diamond**: In parallel with exp. campaign in-beam(M. Diakaki, M. Bacak), probably early next campaign Has its own DACQ. Contacts: E. Griessmeyer and C. Weiss.
- He-3: Discuss results of the simulations and CR39 doses to estimate the response. Contact: A. Tarifeño (IFIC)

• Others:

- a. Fast & small scintillators with n/g discrimination (EJ-200, EJ-301). Groups: CNA-Sevilla, CIEMAT,...
- b. Small LaCl₃, stilbene (Group: IFIC)

Dates & planning of the campaign:

- No final planning or final dates for any of the setups
- MEETING WILL BE ORGANIZED SOON

Summary & outlook

- NEAR + Cyclic activation: (n, γ) via activation products with short half-lives (s, min)
- NEAR : harsh radiation conditions, especially during beam-on periods. Characterization of the background is required → Feasibility to use active detectors.
- Neutron background conditions expected at NEAR were studied with MC simulations. The initial neutron off-beam fluence is between EAR1 and EAR2 (in-beam). With suitable combinations of a simple BPE dump + extra collimator + n-absorbers it could be reduced up to a factor 100.
 - 1st experimental campaign with CR39:
 - Exp. Results vs simulations: Neutron background far from the collimator is underestimated in at least a factor ~6 → relevance of neutron sources along the shielding wall + gap at the end of the wall.
 - Next steps:
 - 2nd experimental campaign: Also dosimeters in-beam + in the gap at the end of the shielding
 - Simulation input from FLUKA with Improved accuracy.
 - Preparation of the **first experimental campaign** with active detectors (LOI INTC June):
 - Ready or in YETS: long cables, n_TOF DACQ, Signal PS trigger
 - Short irradiations \rightarrow access after 30 min
 - Simple shielding elements and background reduction elements (extra collimator) \rightarrow YETS

NextGenerationFU

Plan de Recuperació Transformación y Resiliencia

THANK YOU FOR YOUR ATTENTION!