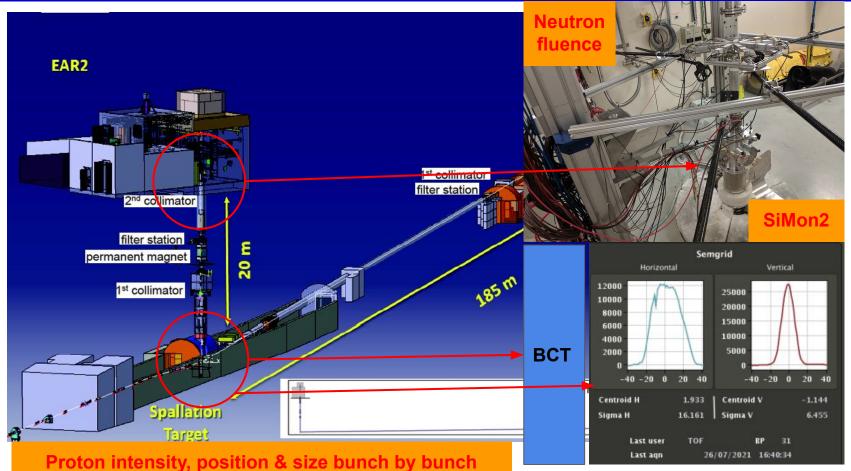
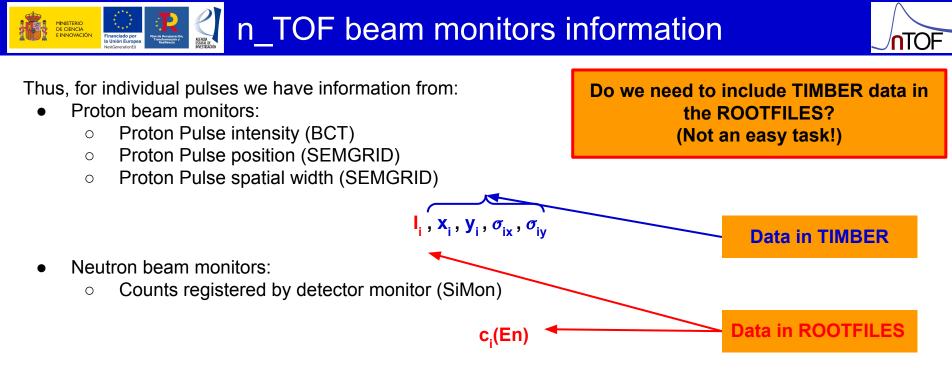
Sensitivity study of neutron flux with beam position for EAR2

<u>J. Balibrea-Correa</u>, J. Pavon-Rodriguez,F. Garcia-Infantes, M. Sabaté-Gilarte,V. Vlachoudis, V. Babiano-Suarez, J. Lerendegui-Marco, C. Domingo-Pardo, I. Ladarescu, A. Tarifeño-Saldivia

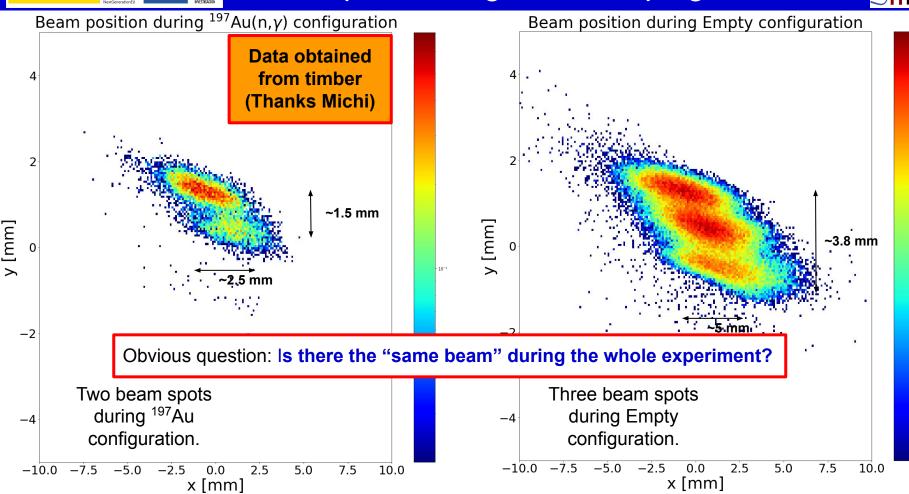
• Proton & neutron beam monitors at n_TOF

• Neutron & proton monitors correlation


• Results


• Summary & Conclusions

Beam monitors @ n_TOF



During the <u>commissioning</u> there was a **impact point sensitivity study** to set operation margins for PS:

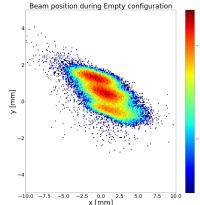
- +/- 10 mm in the x-axis
- +/- 3 mm in the y-axis
- If **3 high intensity** pulses in a row **out** of the margins \rightarrow **Interlock**

Beam spots during ⁹⁴Nb campaign

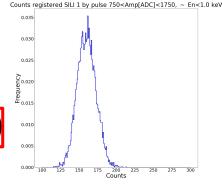
Combined **SEMGRID** data from Timber and **SILI** from ROOTFILES **bunch by bunch** for **~80000 dedicated proton pulses**:

ВСТ	Counts SILI E _{th} <e<sub>n< 10 keV</e<sub>					SEMGRID information		
Intensity/10 ¹²	C ₁	c ₂	c ₃	C ₄	x	У	σ _x	σ _y
8.212580	139.0	171.0	126.0	168.0	0.062085	1.259025	39.078119	13.186662
8.245336	165.0	173.0	133.0	161.0	1.787825	1.193445	32.111586	13.226895
8.232977	166.0	147.0	162.0	175.0	1.068300	1.304377	34.252768	13.200376
8.225536	156.0	150.0	146.0	160.0	0.909891	1.040212	29.437202	13.223696
8.217737	168.0	150.0	171.0	162.0	0.245381	1.213969	30.466211	13.142971

Amplitude corrected by gain drift


Simplest data modelling of c_i:

- It is dominated by the number of protons $(\alpha_{\mathbf{p}})$.
- Corrections because of the impact position x and y (α_x, α_y) .

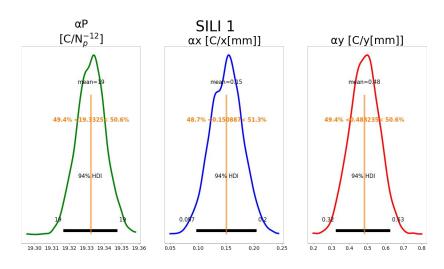

$$\mu_i \sim Poisson \left(\mu_i = N_{p,i} \cdot \alpha_P + \alpha_x \cdot x_i + \alpha_y \cdot y_i\right)$$

Likelihood function for experimental data

SIMON

Results from fitting procedure

/C3

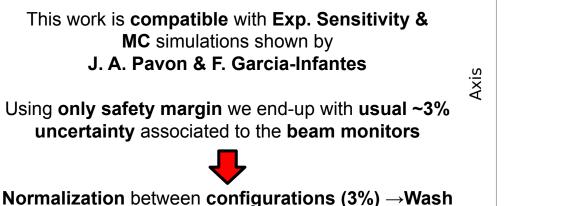

P(model|data) calculation made using PyMC3 library:

- Markov Chain Monte Carlo (MCMC).
- Similar library to RooFit but based in theano.
- Relaxed prior $\alpha_p \in [0,50] \alpha_{x_x} \alpha_y \in [-50,50]$

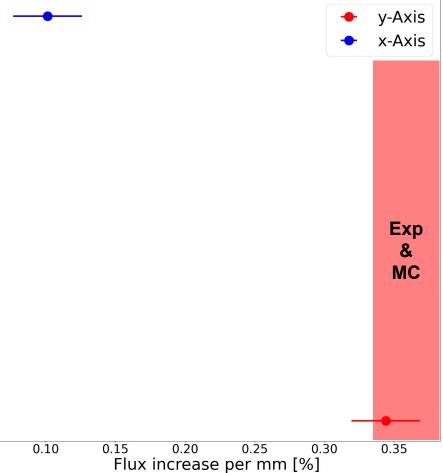
Absolute values of the different parameters for neutron energy range: $E_{th} < E_n < 10$ keV:

SILI	α _P [1/10 ¹² p]	$\alpha_{\rm x}$ [1/mm]	$\alpha_{\rm y}$ [1/mm]
1	19.332(8)	0.15(3)	0.48(8)
2	19.426(8)	0.18(3)	0.58(8)
3	18.586(8)	0.19(3)	0.60(8)
4	19.253(8)	0.14(3)	0.58(8)

Marginal distributions after minimization process

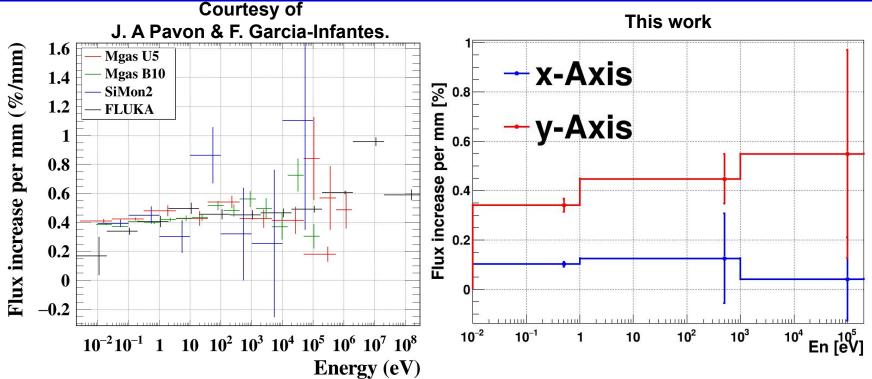


Results from fitting procedure


Integrated neutron flux in the neutron energy from 0.01 eV range up to 1 keV seems to be sensitive to both axis of the proton beam:

- ~0.35%/mm in y-axis \rightarrow Compatible with prev. studies
- ~0.12%/mm in x-axis

out/Confuse with other systematics


Can we do better including beam position given by SEMGRID?

Results as a function of E

Results as a function of E_n:

- Consistent results in y-axis with dedicated sensitivity measurement & MC
- Might be problematic for flux & background subtraction depending on the number of beam spots during the experiment!

- All beam monitors should be used in the analysis:
 - Better control of beam position during analysis might reduce associated systematics to beam.
 - Combine TIMBER and ROOTFILES it is not an easy task as it is \rightarrow XNCALS might delay data processing.
- The results from this work are in agreement with previous dedicated sensitivity analysis:
 - **~0.35%/mm** in y-axis \rightarrow Consistent with prev. studies
 - ~0.12%/mm in x-axis \rightarrow Not reported

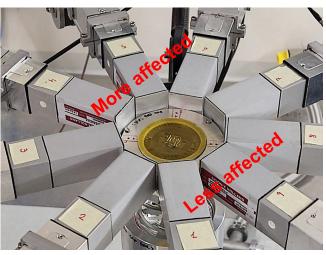
0.01 < E_n [eV] < 1 keV

- The results from **this work** are in **agreement** with **MC** simulations made by **J. A. Pavon & F. Garcia-Infantes.**
- The neutron **flux shape** depends on the **proton beam spot**:
 - Might be problematic for normalization
 - Background subtraction
 - Do we have an effect on the neutron beam spot position?
- I think it would be a **very good idea** to use a **neutron imaging system** and perform the same type of analysis:
 - Beam spot at different **position**? \rightarrow **Better understanding** of the **neutron flux** in **EAR2**
 - Different size? \rightarrow Better understanding for small samples, (n,y) experiments

Thank for your attention!

Backup

Gold configuration ⁹⁴Nb campaign



sTED 1 0.0< E, [eV] < 1.0 sTED 2 0.0< E, [eV] < 1.0 protons Counts/8.5 10¹² protons ¹⁹⁷Au(n, y) configuration ⁷Au(n, γ) configuration Empty configuration Empty configuration ₽¹⁰⁻¹ Empty configuration scaled Empty configuration scale Beam-off ¹⁹⁷Au(n, y) Beam-off ¹⁹⁷Au(n, y) Counts/8.5 Beam-off Empty Beam-off Empty 10-4 10^{-4} 10-5 Errenter, Malak ter data adameter 10-5 For a for M sTED 5 0.0< E_n [eV] < 1.0 sTED 6 0.0< E_n [eV] < 1.0 Counts/8.5 10¹² protons protons ¹⁹⁷Au(n,γ) configuration ¹⁹⁷Au(n, y) configuration Empty configuration **Empty configuration 1**12 Empty configuration scale Empty configuration scaled Beam-off ¹⁹⁷Au(n, y) Counts/8.5 Beam-off ¹⁹⁷Au(n, y) Beam-off Empty Beam-off Empty 10-4 10^{-4}

E_{dep} [MeV]

⁹⁴Nb campaign:

- Comparison between ¹⁹⁷Au (signal) and Empty configurations (background) @ 0.01< En[eV] < 1.
- It depends on the sTED?

Is there any relationship with the beam position?

E_{dep} [MeV]