

Signal to Background study for capture measurements in EAR2

V. Alcayne, <u>M. Bacak</u>, A. Casanovas, **A. Cintorra**, J. Lerendegui-Marco

14.12.2022 – n_TOF Collaboration Meeting

Introduction & Motivation

- Triggered by and continuing investigations from:
 - Victor (2021) <u>background study of the effect of different</u> <u>distances with B/L6D6</u>
 - César (2022) tests with LaBr₃ and LaCl₃ at different distances and impact on the peak2valley ratio of resonances

• "What's the ideal capture position in EAR2 wrt SBR?"

- Sample positioning (flight path / BIF)
- Detector positioning (distance to beam center)
- Setup:
 - Detectors at different distances and flight paths
 - Samples at different flight paths

Exp. Setup and campaign

	Flight Path	Pipe End	Pipe Length	Air Gap	L_0
FP1	65.5 cm	56.5 cm	38.0 cm	26.5 cm	19.525 m
FP2	44.5 cm	35.0 cm	17.0 cm	33.0 cm	19.315 m
FP3	30.5 cm	20.5 cm	17.0 cm	48.0 cm	19.175 m

Detector	Distance	ID	Source	Mass	Thickness
C6D6 A	24.0 cm	689	¹⁹⁷ Au (20 mm)	645 mg	100 µm
C6D6 B	18.0 cm	1189	¹⁹⁷ Au (10 mm)	-	102 µm
sTED 2	3.1 cm	106	C (nat) (20 mm)	2.646 g	5 mm
sTED 3	4.0 cm	1209	Fe (20 mm)	5.143 mg	2.1 mm
sTED 6	5.0 cm	184	Pb (nat) (20 mm)	7.281 mg	2.1 mm

+ empty (with and without PE floor)

Empties PE-noPE (no normalization required)

 $noPE \rightarrow more background irrespective of detector size/position$ Background dependence on flight path for C6D6 (seems stable in STED position range)

Empties PE-noPE (no normalization required) II

 $noPE \rightarrow more background irrespective of detector size/position$ Background dependence on flight path for C6D6 (seems stable in STED position range)

Important: normalization with Au to correct for BIF

- Problem: Count rates of up to 10 counts / us:
 - Important corrections for the normalization
 otherwise direct comparison is invalid
- Dead time model:

$$CF(E_n) = \frac{1}{1 - \tau \cdot CR(TOF)}$$

Pile-Up/Deadtime

$$CF(E_n) = \frac{1}{1 - \tau \cdot CR(TOF)}$$

14. Dec 2022

Au before/after DT correctiong & empty subtraction

Before DT correction After DT correction uncorrected counts (normalized sat.) corrected counts (normalized sat. C6D61 D, 19.18 m C6D61 D, 19.18 m C6D62 D, 19.18 m C6D62 D, 19.18 m STED2 D, 19.18 m STED2 D, 19.18 m $|0^{-1}|$ 10^{-1} STED3 D, 19.18 m STED3 D, 19.18 m STED6 D, 19.18 m STED6 D, 19.18 m 10⁻² 10^{-2} 10⁻³ 10⁻³ All energy ranges seem well aligned (in log) 10^{-4} 10^{-4} Still ok for a first comparison 10^{3} 10^{-2} 10³ 10^{-2} 10² 10^{-1} 10^{4} 10^{-1} 10^{2} 10^{4} 10 10 1 $E_n (eV)$ $E_n (eV)$

Extracted normalizations / relative BIFs

	Αι	u integral (per 8.5e1 @ flight path	12)
	19.53	19.32	19.18
C6D6 1 (A)	2.27	2.63	2.84
C6D6 2 (B)	3.30	3.87	4.44
STED 2	2.09	2.64	2.79
STED 3	1.66	2.01	2.11
STED 6	1.18	1.41	1.53
	Ratio to	max flight path (rela	tive BIF)
		1.16	1.25
		1.17	1.35
		1.26	1.33
		1.22	1.27
		1.19	1.30
Mean		1.20	1.30 —

Cnat BIF normalized – neutron scattering

Detectors relative to each other change but overall trend seems stable.

Shape at thermal looks weird – no idea (bragg edges of the carbon crystal?

Pb BIF normalized – gamma scattering

Slightly less counts at longer flight paths

(usual Ag contaminant)

Fe BIF normalized – neutron and gamma scattering

Slightly less counts at longer flight paths

Summary & outlook

• Three weeks of data taking:

- 2 setup swaps to different flight paths \rightarrow thanks to everybody who helped making this as efficient and reproducible as possible
- Thanks to Oscar for the needed modifications of the sample holder to make it flexible
- Thanks to our summer student Alan Cintorra (via Carlos) for his interest, help to set up the experiments and a nice portion of data analysis

In depth analysis is pending

• Master student anyone?

• First results might indicate:

- Potential to increase BIF (30%?) by reducing the flight path without paying a price in additional background (see Fe, Pb (Cnat))
- The investigation can still be complimented with a finer and wider grid of detectors

Thanks!

Michael Bacak michael.bacak@cern.ch

