Physikalisch-Technische Bundesanstalt Braunschweig and Berlin National Metrology Institute

Status of the DDX Experiment in EAR-1

R. Beyer, M. Dietz, A. Junghans, R. Nolte, E. Pirovano, P. Vaz

n_TOF Collaboration Meeting , Edinburgh, 14th Dec 22

Outline

- Motivation & Objectives
- DDX Test 1: 9th to 12th May 22
- Learnings I
- Improvements
- DDX Test 2: 16th 23th Nov 22
- Learning II
- Carbon Data
- Summary & Outlook

Neutron-induced emission of light charged particles at 100-200 MeV

High-energy secondary neutrons produced

- in hadron therapy: E_n up to 200/400 MeV for proton/carbon beams
- by cosmic radiation: E_n up to GeV

Absorbed dose calculations require

- DDX data for (n, px) (n, dx) (n, αx) ...
- for tissue constituents (C, N, O,..)
- Particularly important for young patient of radiation therapy!

Present situation:

- Only few data for the emission of hydrogen and helium ions above 50 MeV
- Modelling of composite ejectiles is challenging

DDX test experiments @ nTOF – May + Nov 2022

- **Prototyp**: Measurement of the **D**ouble-**D**ifferential Cross Section of Neutron-Induced Charged-Particle Emission of Carbon above 100 MeV
- DDX Principle: ¹²C(n,lcp x) --- light charged particle: p,d,t,³He,α
- Objectives:

TEST 1:

- Response to the g-flash?? Switch device needed?
- Maximum neutron energy detectable?
- Mechanical setup? Alignment?
- <u>Procedure:</u>
 - Try different detector configurations (Si diodes + CeBr / plastic scintillator)
 - 2 sample-types with different thickness
 - PE (1mm or 2.3mm)
 - C (0.125mm 1.5mm)

TEST 2:

- Improve RINGING
 problem
 - Find solutions
- Collect Statistics for proposal (DE-DE-plots)

DDX test experiments @ nTOF – May + Nov 2022

Setup, Calibration, Alignment, Switch device...

Waveforms I (May)

-24000

-25000

-26000

Amplitude /

-29000

-30000

-31000

ວົ _____27000

- Tried out different configurations (Cividec, Canberra2004, Switch w Cremat, ...)
- RINGING

=>Oscillations with different amplitude, similar patterns, independent of samples

Main Challenges

- g-flash is quite moderate, no switch needed
- RINGING ⇔ EM-interference:
 - Beam-induced issue results in a ringing baseline; esp. ~10µs after g-flash === MeV neutron region
 - Critical if Ringing ~> Signal
 - Frequency estimate: 3-5 MHz
 - Appears in differential experimental setups (detectors, amps, ...)
- Unclear where interference enters signal chain
 - Inside chamber (beam) or preamps/connectors (bunker)?
- \rightarrow Temporary solution: Baseline reconstruction

Talk @ Impedance WG CERN, Aug '22: <u>Ringing Problems at high En @ n TOF EAR1</u> First Antenna Measurement during Nov. DDX beam time

3 Main Improvements

- Aluminium shielding (100-200μm) of kapton windows (RF-tight)
- SMA cabling inside chamber
- New diode holder with option for preamp inside

Learning II (Nov 2022)

- Proper shielding of (pre)amplifier + cable connection is needed
- RF-tight chamber through Alu + Kapton windows
- Preamp inside the vacuum chamber is shielded best
- Grounding of plastic scintillator improved baseline

- Things that did not work / improve:
 - Capacitance-matched preamps (thin Si ~2nF) like: Ortec 142B or 142C, Mesytec MPR-1,
 - Re-wrapping with Aluminium
 - Turning diode (direction of ground)

Carbon Data Tele1

- Cividec gain for thin diode not matched yet
- G-flash hardly saturates full range
- Clear coincidence pattern

Carbon Data Telescope 1

Clear coincidence pattern

DE1:

DE2:

Particle separation possible (H-He; p-d)

Carbon Data Tele1 vs Tele 2

- Clear coincidence pattern with both: Cividec or Cremat
- Particle separation possible (H-He)

PIR

Summary + Outlook

- Two working telescopes with wrapped Cividecs and Cremat preamp inside shielded vacuum chamber
- Ringing is under control or managable
 -> Further investigation
- Particle identification seems possible

Outlook:

- Baseline reconstructed PSA needed
- Implement energy calibration
- Further analysis ongoing to check detector resolution +...
- Planning of final experiment (DDX Proposal 2023)

E3 (mV)

3000

4000

Acknowledgement:

This project has received funding from the European Union's Horizon 2020 research and innovation programme, Euratom research and training programme 2014- 2018 under grant agreement No 847552 (SANDA).

- HZDR colleagues
- PTB Transport Service
- PTB Workshop and electricians
- Local team
- Shifters
- RP (PTB + CERN)

THANK YOU!

SANDA

Supplying Accurate Nuclear Data for energy and non-energy Applications

Acknowledgement:

THANK YOU!

This project has received funding from the European Union's Horizon 2020 research and innovation programme, Euratom research and training programme 2014- 2018 under grant agreement No 847552 (SANDA).

- HZDR colleagues
- PTB Transport Service
- PTB Workshop and electricians
- Local team
- Shifters
- RP (PTB + CERN)

SANDA

Supplying Accurate Nuclear Data for energy and non-energy Applications

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin

Bundesallee 100 38116 Braunschweig

Mirco Dietz Telefon:+49531 592-6425 E-Mail: mirco.dietz@ptb.de www.ptb.de APPENDIX / EXTRA SLIDES

(Best)Carbon Data

Cremat preamp inside!

150mm Plastic scintillator

Carbon Data Tele2

- Clear coincidence pattern
- Particle separation possible (H-He)

DE1: 49μm + Cremat110+FFA DE2: 507µm+ Can2004 + FFA DE3: 3" CeBr3

Carbon Data Tele2 with Shaper inside

- Clear coincidence pattern
- Particle separation possible (H-He but less gain (1/2) and less statistics

(mV)

DeltaE1

400

1200

1000

800

600

400

200

500

1000

10

10⁻¹

Cremat CR200 shaper inside (over 1 night), rebinned

DE1: 49μm + Cremat110+FFA/Cr200 DE2: 507μm+ Can2004 + FFA DE3: 3" CeBr3

Setup @ n_TOF

Summary May '22 --- Detector Configurations

DDX Confi-	DDT1 1	DDT1 3	DDT1 2	PDT2 1	DDT))	PDT2 2		Filos / Commonts
Config 1 (9/5)	50μm-Civ#032	1000μm-Civ#033	CeBr3_880V	XXX (not working)	500-PA2004-FFA (13.2)	Plastic100_1680V	1mm PE	112898 – 112902.
Config 2 cal	50-Cividec#032	1000-Cividec#033	CeBr3_990V	50-PA2004_FFA(13.1)	500-PA2004-FFA (13.2)	Plastic100_1680V	3A-RPT1 3A-RPT2	112906-112908,112924 112910-112911, 112917-112918
Config 2 (10/5)	50-Cividec#032	1000-Cividec#033	CeBr3_990V	50-PA2004_FFA(13.1)	500-PA2004-FFA (13.2)	Plastic100_1680V	1mm PE 1mm C	112934 112935-112940
Config 3 cal (11/5)	50- Cremat-TFA	1000-Cremat-Shaper	CeBr3_1300V	60 -PA2004_FFA(13.1)	500-PA2004-FFA(13.2)	Plastic100_1680V	3A-RPT1 3A-RPT2_1	112950-112951 112948
Config 3 (11/5)	50- Cremat-TFA	1000-Cremat-Shaper	CeBr3_1300V	60 -PA2004_FFA(13.1)	500-PA2004-FFA(13.2)	Plastic100_1680V	1mmPe noSw 1mmPE Sw 1mmPE + Pb	112964 112965-112970 112971
Config 3 PA (11/5)	50-Cremat	1000-Cremat	CeBr3_1300V	60-PA2004	500-PA2004	Plastic100_1680V	1mm PE 1mm PE Sw	112972-112975 112976
Config 4 (11/5)	50-Cremat-Shaper	1000-Cremat-TFA	CeBr3 1300V	60-Cividec#032	500-PA2004-FFA(13.2)	Plastic100 1680V	1mm PE Empty 1mm C	112977-112981, 112984 112985-112986 112987-11988
Config 5 (12/5)	50-Cremat-Shaper	1000-Cremat-TFA	CeBr3_1300V	60-Cividec#032	CAN500 -PA2004- FFA(13.2)	Plastic100_1680V	207Bi 1mm C	112989-112993 112994-113000
Config 5 cal (13/5)	50-Cremat-Shaper	1000-Cremat-TFA	CeBr3_1300V	60-Cividec#032	CAN500 -PA2004- FFA(13.2)	Plastic100_1680V	3A-RPT1 3A-RPT2	113006 113008

