

ALMA MATER STUDIORUM Università di Bologna

Status of NN scattering length experiment

Cristian Massimi for the working group

Department of Physics and Astronomy

Recap

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Letter of Intent to the ISOLDE and Neutron Time-of-Flight Committee

Measurement of the neutron-neutron scattering length at the CERN n_TOF facility

September 21, 2020

D.M. Castelluccio^{1,2}, P. Console Camprini^{1,2}, M. Diakaki³, Z. Eleme⁴, P. Finelli^{1,5}, A. Junghans⁵, M. Kokkoris³, A. Manna^{1,5}, C. Massimi^{1,5}, P. Mastinu¹, M. Mastromarco¹, P.M. Milazzo¹, A. Musumarra^{1,7}, N. Patronis⁴, M.G. Pellegriti¹, E. Stamati⁴,

N. Terranova^{1,2}, G. Vannini¹, R. Vlastou³, R. Zannoni⁵, and the n_TOF Collaboration⁸

¹ Istituto Nazionale di Fisica Nucleare, INFN, Italy

- ² Ag. naz. per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile, ENEA, Italy
- ³ National Technical University of Athens, Greece
- ⁴ University of Ioannina, Greece
- ⁵ Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
- ⁶ Helmholtz-Zentrum Dresden-Rossendorf, Germany
- ⁷ Dipartimento di Fisica ed Astronomia, Università di Catania, Catania, Italy
 ⁸ www.cern.ch/n_TOF

Spokespersons: C. Massimi (massimi@bo.infn.it), A. Musumarra (musumarra@lns.infn.it), N. Patronis (npatronis@uoi.gr) Technical coordinator: O. Aberle (oliver.aberle@cern.ch)

Abstract: We propose to exploit the interaction of the two neutrons in the final state of the neutron-induced deuteron breakup reaction ${}^{2}H(n,p)nn$ for determining the neutronneutron scattering length in a wide energy range (namely between 10 and 100 MeV) in a single experiment. By taking advantage of the unique features of the updated n_TOF facility, the measurement can be carried out at EAR2. The experiment is based on the detection of the three outgoing particles in kinematic coincidence, leading to a full threebody kinematic reconstruction. The feasibility of this challenging experiment requires a preliminary experimental activity in order to investigate the possibility of using an active target, based on liquid scintillation detector, highly enriched in deuterium.

Requested protons for the test: 5×10^{17} protons on target Experimental Area: EAR2

Recap

ALMA MATER STUDIORUM Università di Bologna

Recap

RIPTIDE Neutron tracker

4

Recap: deuterated active target TARAT

2021

Stilbene-d12 crystal kindly provided by LLNL

F.D. Becchetti et al., NIM A 908(2018)376

MA MATER STUDIORUM

at **DEMOKRITOS**

Recap: deuterated active target TARAT

h1AratAmp Entries 100016 Area Fast / Area Slow Mean x Mean y 0.05737 0.9 0.3732 Std Dev x Std Dev y 0.06393 0.09203 Voltage (V) 0.2 0.8 n/γ discrimination 0.7 0.08 0.15 0.6 0.06 0.5 0.1 0.4 0.04 0.05 0.3 0.02 0.2 700 800 900 1000 1100 1200 time (ns) 0.1<u></u>____ 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 0.7 1 Amplitude (V) amplitudes total Voltage (V) 100011 Entries 0.1 2 0.0512 Mean Std Dev 0.05376 0.08 all signals 0.06 γ rays 0.04 With Marine neutrons 0.02 0 manager 600 time (ns) 100 200 300 400 500 10⁻⁵ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 0.4 6 Amplitude (V)

2021

Recap: deuterated active target TARAT

2021

Geant4 Simulations:

- 3-body calculation for ²H breakup (here developed)
- NRESP for n + ¹²C reactions

ALMA MATER STUDIORUN Università di Bologna

- SiPM survived to all the test measurements, small degradation (increased noise) was just observed in the HAMAMATSU devices
- No significant noise trouble (good HF noise rejection)

CERN data (on-beam and off-beam) are under analysis reduced dynamics due to γ -flash to be quantified as function of beam intensity

at n TOF

Recap: deuterated active target TARAT

Some data: response to γ -flash

at n_TOF

2021

F

R

2

10

What's new

1ST test in 2021 prototype of TARAT

ALMA MATER STUDIORUM Università di Bologna

What's new

1ST test in 2021 prototype of TARAT

2^{ND} test in 2022

SEGMENTED TARAT

ALMA MATER STUDIORUM Università di Bologna

What's new

2^{ND} TEST IN 2022

Conclusions

- The active target concept is valid, however, in EAR2 TARAT does not work in the energy region of interest. In other words: NN experiment is not possible with the present setup (segmented target) in EAR2.
- 2. With a reduced counting rate (hundreds of ²H breakups per day), **in EAR1** the NN experiment **is possible in principle**.
- 3. The feasibility depends on the development of the neutron tracker RIPTIDE. Now ongoing.

Working Group

R. Mucciola, A. Musumarra, M.G. Pellegriti, N. Patronis, M. Bacak, and many others

ALMA MATER STUDIORUM Università di Bologna

Cristian Massimi

Department of Physics and Astronomy

cristian.massimi@unibo.it

www.unibo.it

backup

P.A. Assimakopoulos 2006 Proton detector D4 $46_{cl\eta_1}$ Neutron beam 80° 34° D₂ target Sm D3 Neutron detector ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA