

Test of the annular detector for (n, cp) studies: Preliminary Results

<u>S. Goula</u>, S. Amaducci, L. Cosentino, M. Mastromarco, G. Vecchio, P. Finocchiaro, N. Patronis, C. Massimi, A. Mazzone, N. Colonna , S. Pomp, D. Tarrio

Motivation

- Increasing worldwide need for (n, lcp)
 - Nuclear Astrophysics
 - Nuclear Technologies

Lack or discrepant/inconsistent experimental data

At least **30 poorly known** cross-sections

• The detection systems are setting a limit to the measured reactions

Solution?

Use novel detectors!

L. Cosentino et al., CERN-INTC-2022-019, INTC-P-629, https://cds.cern.ch/record/2809189

But.. why do we need the annular detector?

New detection apparatus **devoted** to particle discrimination

Chance to overcome the $\Delta E/E$ technique limitations

- Neutron Transmutation-Doped (NTD)
- **Segmentation**: $\theta \& \phi$ angles
 - Angular distribution & Good position-angular resolution
- **Digital-LNS** Pulse Shape Analysis based on signal shapes
 - Readout directly from preamplifiers
- Neutron energies thresholds for PSA:
 - ~ 2-3 MeV till tens of MeV

Annular Detector: Configuration

Principle of operation:

Measurement of (n,cp) reactions in EAR1 and EAR2 for characterization and validation of new detection systems and techniques

[May 11, 2022]

L. Cosentino', F. Murtas¹³, S. Amaducci¹³, M. Mastromarco⁴, G. Vecchio', P. Finocchiaro⁴, N. Patronis⁴, S. Goula⁴, C. Massimi⁶, A. Mazzone⁴, N. Colonna⁴, S. Pomp⁷, D. Tarrio⁷.

INFN - Laboratori Nazionali del Sud, Catania, Italy
INFN - Laboratori Nazionali Frascati, Frascati, Italy
CERN & INFN
INFN - Sezione di Bari, Italy
University of Ioannina, Greece
University and INFN, Bologna, Italy
⁷ Uppsala University, Sweden

Possible modular configuration:

Validation test – EAR1

Days: 25-28 November

Purpose:

- γ flash
- Response of the detector
- PSA software
 - Attempt for particle identification

Setup:

- Detector & Target: attached to the flange
- Used targets: **PE** (1mm) & **LiF** (400nm)
- Aluminum chamber in vacuum: ~10⁻³ mbar

Approx. 2 days of data taking!

Raw Data - Low energy part

Simultaneous readout for both strips and sectors possible

Raw Data - Low energy part

Inter-strip event reconstruction possible:

Raw Data - Low energy part

Raw Data - High energy part

Previous year's setup:

NOT the ideal one

• Working in **air**

PSA Routine

Courtsesy: G. Vecchio

Amplitude Spectra: Energy condition < 1keV

Amplitude extracted using the Trapezoidal Filter - 16 Strips - Front

13-14 December 2022

Amplitude Spectra: Energy condition < 1keV

Amplitude extracted using the Trapezoidal Filter - 16 Sectors - Rear

Reconstruction of inter-strip events

Interstrip events: ~ 5 %

Courtsesy: S. Amaducci

Conclusions & Pespectives

- Detector's behaviour: promising in the low-energy part
- Observed challenges: Noise in the high-energy region
 - Looking for mitigation solutions
 - ...Grounding? ...Beam-related? ...Chamber?
- Analysis with the usage of the TF in the high-energy region
 - Further investigation is planned in ILL to improve the analysis routine used for the PS technique
- Looking forward to the physics measurements planned for May 2023

Thank you!

styliani.goula@cern.ch home.cern

Extra Slides

13-14 December 2022

High-frequency noise: Direct comparison

SiMon1 2021: Commisioning

SiMon1 2022: ⁷⁹Se experiment

More Photos

14 December 2022

Gain-Difference: Front & Rear Side

Neutron Transmutation-Doping in Si (NTD)

- Natural Si:
 - ²⁸Si & ²⁹Si + n → stable Si-isotopes
 - ${}^{30}\text{Si} + n \rightarrow {}^{31}\text{Si} \rightarrow (\beta^{-}){}^{31}\text{P}$

