Probing New Dark Boson with nTOF

Carlo Gustavino (INFN-Roma)

for the X17 Working group

X17 ATOMKI RESULTS

- ATOMKI group observed a significant anomaly in the emission of electron-positron pairs in the $^{7}Li(p,e^{+}e^{-})^{8}Be$ and $^{3}H(p,e^{+}e^{-})^{4}He$ reactions.

-This anomaly has been interpreted as the signature of a 17 MeV BOSON, not foreseen in the standard model of particle physics.

-The so called X17 boson could be a mediator of a fifth force, characterized by a strong coupling suppression of protons compared to neutrons.

-This evidence/scenario is presently not confirmed or excluded by other experiments or groups.

Reaction	$M_{X17} \pm \Delta M_{stat} \pm \Delta M_{syst}$
⁷ Li(p,e⁺e⁻) ⁸ Be	16.70±0.35±0,50 MeV
³ H(p,e⁺e⁻)⁴He	16.94±0.12±0.21 MeV

Krasznahorkay, A.J.; et al.: PRL116 (42501): 042501 (2016). Krasznahorkay, A.J.; et al.: PRC 104, 4, 044003 (2021).

PRESENT DATA: -ATOMKI: ⁷Li+p \rightarrow ⁸Be* \rightarrow ⁸Be+X17 -ATOMKI: ³H+p \rightarrow ⁴He* \rightarrow ⁴He+X17

NEW PROJECTS: MEGII@PSI:⁷Li+p \rightarrow ⁸Be* \rightarrow ⁸Be+X17 PADME@LNF: e⁺+e⁻ \rightarrow X17 NewJedi@GANIL: ⁷Li+p \rightarrow ⁸Be* \rightarrow ⁸Be+X17 nTOF@CERN \rightarrow ³He+n \rightarrow ⁴He* \rightarrow ⁴He+X17

Signature: e+e- pairs with E_{tot}>17 MeV at large relative angle.

³H(p,e⁺e⁻)⁴He setup @ ATOMKI

- ³H target and proton beam with E_p=900 keV
- Detection of e⁺e⁻ pairs using:
- 6 plastic scintillators 8.2x8.6x8.0 cm³ (energy of e⁺e⁻ pairs)
- 6 double-sided silicon strip detectors (angle between e⁺e⁻ pairs)

X17 @ nToF

Basic idea: new study of excited ⁴He exploiting neutrons:

Physics:

- X17 existence
- X17 properties (mass, J^π, life time,..)
- X17 Coupling (e.g. proto-phobic nature of the fifth force).
- First measurement of the standard ³He(n,e⁺e⁻)⁴He cross section
- Comparison of experimental data with "ab Initio" calculation

X17 @ nToF

The wide energy range of neutrons at nTOF is well suited to study the X17 properties (e.g if it is a scalar, pseudo-scalar, vector or axial particle) See M. Viviani et al.: PRC 105, 014001 (2022)

X17 @ nToF

The study can be accomplished with a large acceptance detector to measure the spatial distribution of e+e- pairs, which is also sensitive to the x17 properties *See M. Viviani et al.: PRC 105, 014001 (2022)*

X17 Detector

FINAL DESIGN.

Two large area module, each one composed by:

-1 μTPC faced to the target, realized with μRwell (e+e- tracking).

-2 planes 3 mm thick, composed by orthogonal scintillator strips (ΔE of e+e-).

-1 plane 10 cm thick, composed by scintillator modules (Total energy of e+e-) About 50% acceptance for e+e- pairs.

scintillators: Test at EAR2 (06/2022)

- 1 planes of 25x10x2 cm³, composed by:
- 5 bars 25x2x2 cm³
- 5 channels
- **Background OK**
- Data suggest active PMTs against gamma flash

μ Rwell: Test at EAR2 (06/2022)

- Each uRwell has 512 strips (horizontal) readout by 4 Front-end cards (APV25)
- The APV25 stores the charges of 128 strip every 25 ns (one time sample)

μ Rwell: Test at EAR2 (06/2022)

2 uRwell prototypes 30x30 cm²

Signals in μ Rwell at gamma flash

μ Rwell: Test at EAR2 (06/2022)

2 uRwell prototypes 30x30 cm²

Signals in μ Rwell at gamma flash + 1.7 μ s

Next: Demonstrator

Already funded by CSN3 (detectors+elecronics) Test at LNL with the ¹⁹F($p, \alpha e^+e^-$)¹⁶O reaction Test at ISS with Cosmic rays (tracking, basic performance) Test/final validation at EAR2 (using a ³He target prototype)

Tentative 2023 activity schedule

-Fast test a EAR2 of scintillators coupled with active PMTs (<april 2023)

- -Construction of the prototype funded by INFN (<may 2023)
- -Detailed simulation using nTOF beam, setup geometry, ab-initio prediction (<june 2023)
- -Tracking and energy resolution of the prototype with Cosmic rays (Throughtout 2023)

-Detection of e⁺e⁻ pairs at LNL, exploiting the p+¹⁹F \rightarrow ¹⁶O*+ α +e⁺e⁻ (proposal submitted to the LNL PAC)

- -³He target construction throughtout 2023 (MASTINU/CERN)
- -Final test at EAR2 with ³He target (<december 2023)
- -Construction of the full detector (<june 2024)
- -LONG RUN (2024)

μTPC

 $⁽E_{e_{-}}-E_{e_{+}})/(E_{e_{-}}+E_{e_{+}})$

n_TOF @ CERN

Pulsed neutron beam in a wide energy range. Time of flight to establish the energy of each interacting neutron energy \rightarrow ³He(n,e⁺e⁻)⁴He; ²H(n,e⁺e⁻)³H; H(n,e⁺e⁻)²H; ⁷Be(n, e⁺e⁻)⁸B...

Neutron energy	Neutrons
1-10 eV	0.9×10^{6}
$10-100~{\rm eV}$	1.1×10^6
0.1 - 1 keV	1.2×10^6
$1-10 {\rm ~keV}$	1.4×10^6
$10-100~{\rm keV}$	1.9×10^6
$0.1-1 { m MeV}$	$5.8 imes 10^6$
$1-10~{\rm MeV}$	$4.5 imes 10^6$
$10-100~{\rm MeV}$	1.4×10^6
Neutrons ne	er nulse

ACCEPTANCE: Theta_x,y|<76 degrees (2 planes 40x40 cm2, each at a distance of 5 cm from the beam axis)

- #coppie rivelate
- IPC: 59%
- X17: 47%

|Theta_x|<63.4 degrees -> (cylinder 20 cm long with a radius of 5 cm)

- #coppie rivelate
- IPC: 75%
- X17: 58%

Target

0.6 mm thick envelope of Carbon Fibre will be tested to operate with ³He at 380 bar, 300 K. This pressure corresponds to 59 g/L (density of liquid ³He)

courtesy P. Mastinu

LYSO, EJ-200, BrCL₃

Faint signals due to huge Gamma Flash

LYSO, EJ-200, BrCL₃

Ej-200

0

2

1 planes of 25x10x2 cm3, composed by 5 bars 25x2x2 cm3x4,8x0,3 cm 5 channels

1

3

5-00