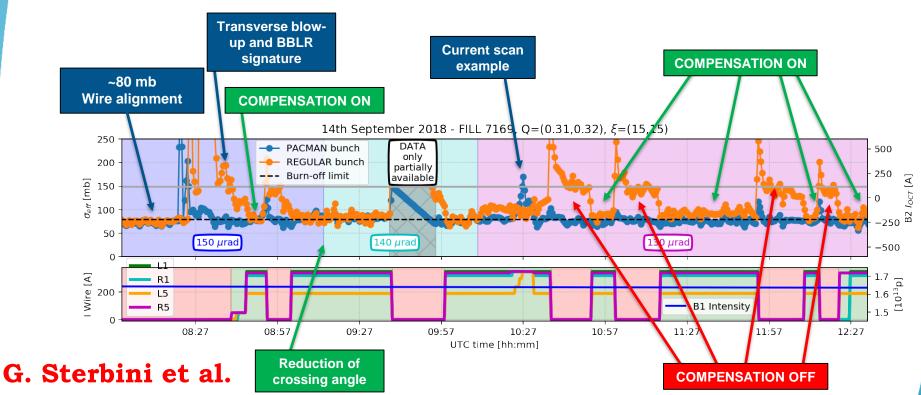


Welcome to the WP2/WP13 HL-LHC Satellite Meeting, on Long-Range BeamBeam Wire compensation

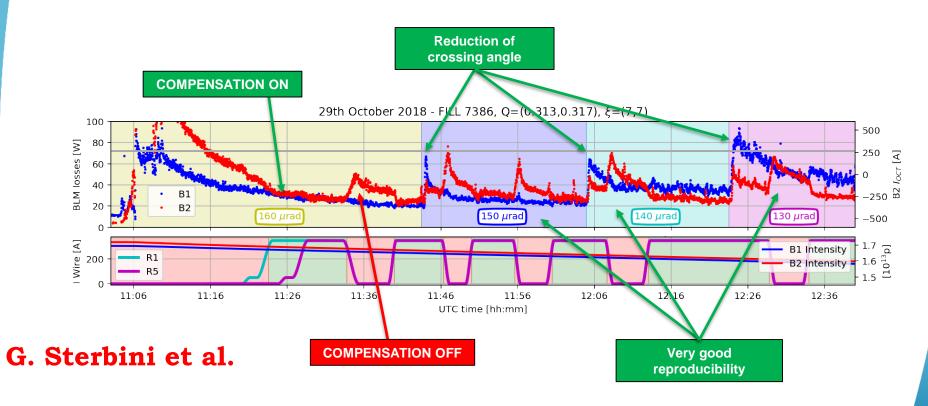
Y. Papaphilippou



Scope:

Review of Run2 experimental results

Low-Intensity experiment

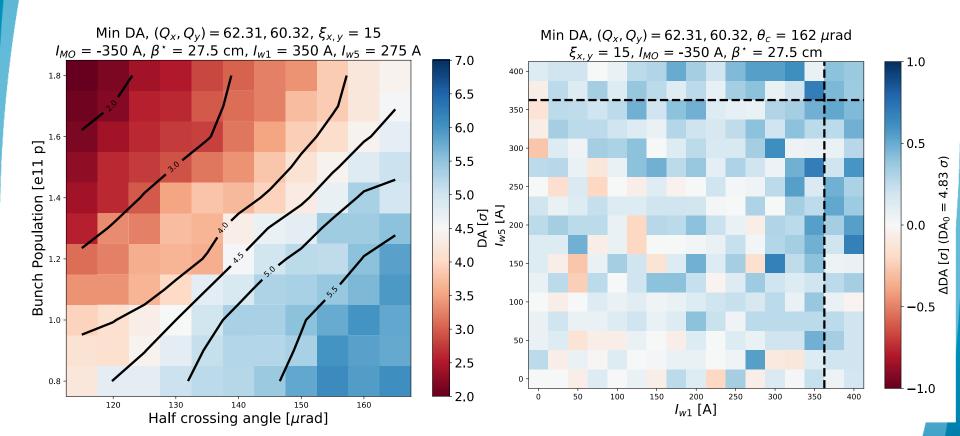


 Almost full compensation, even at reduced crossing angle, for regular bunch whereas head-on bunch not degraded.

Scope:

Review of Run2 experimental results

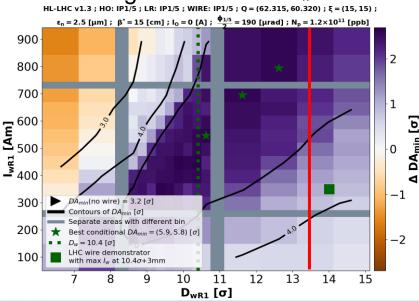
High intensity experiment (operational conditions)

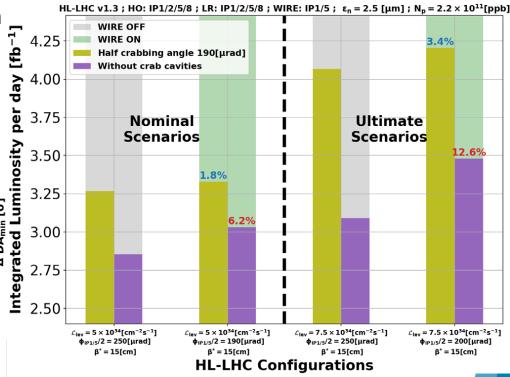


Compensation provides a reduction of B2 losses of ~20%.

Scope:

Review simulation results for Run3

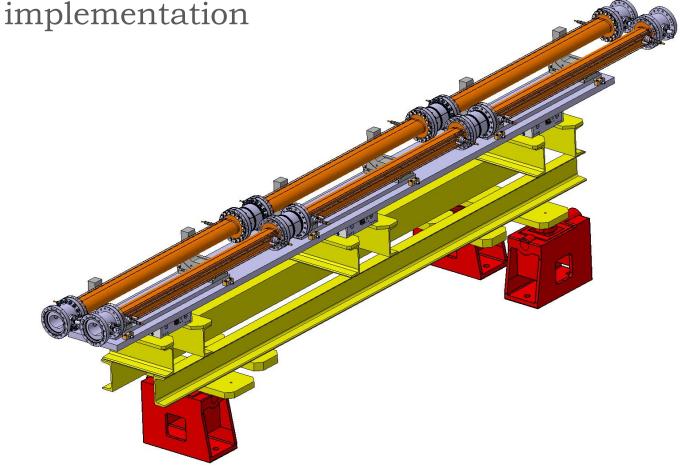

A. Poyet et al.


Scope:

Predictions for HL-LHC performance

At the end of the luminosity leveling, the DC wires are mandatory and can guarantee $DA_{min}\approx 6 \sigma$ with different wire conf gurations with $D_W > 10.4 \sigma$.

HL-LHC V1.3; HO: IP1/5; LR: IP1/5; WIRE: IP1/5; Q = (62.315, 60.320); $\xi = (15, 15)$;



K. Skoufaris et al.

Scope:

First ideas for wire hard-ware design and implementation

A. Beltarelli et al.

Scope:

 Strengthening collaboration between TRIUMF and CERN

Expertise in beam transport and accelerator systems Beam line engineering physics group (M. Marchetto)

O. Kerster et al.

- Beam optics design
- Hardware design, engineering and installation of electrostatic and magnetic beam line systems
- OPERA® Elektra calculation for electric field
- Custom feedthrough developed in collaboration with vender
- UHV assembly procedure

Timeline (2019)

- **Experimental verification** achieved with demonstrator (2016-2018)
- Simulations proved potential at present LHC but also for HL-LHC, with a solid DC wire solution (2017-2019)
 - Refining flat optics operational scenario (2020) -> (2023)
- Wire operation during run3 will clarify operational and machine protection issues (2021-2023) -> (2022-2025)
- Hard-ware design and short prototype HW tests for HL-LHC (2020)
- **Technical review** (including budget) for using wire compensation in the HL-LHC era (2020) -> (Q1 2023)
- Prepare **locations** for integration (during LS3)
- Wire installation and operation for HL-LHC (during Run4)

Timeline (2019)

- **Experimental verification** achieved with demonstrator (2016-2018)
- Simulations proved potential at present LHC but also for HL-LHC, with a solid DC wire solution (2017-2019)
 - Refining flat optics operational scenario (2020) -> (2023)
- Windows
 Image: Windows
 Windows
 Windows
 Windows
 Windows
 Windows
 Windows
 CERN, (2025)
 Hare the collaborators
- **Technical review** (including budget) for using wire compensation in the HL-LHC era (2020) -> (Q1 2023)
- Prepare **locations** for integration (during LS3)
- Wire installation and operation for HL-LHC (during Run4)

BBLR wire meeting 2022

Scope:

- WP2/WP13 HL-LHC Satellite Meeting, Uppsala 2022 - Long-Range Beam-Beam Wire
- Run 3 experimental results and numerical simulations
- Predictions for Run 4
 - Collimation, impedance, heat-load
- Results of wire hardware **short-model** prototype
 - Integration, schedule
- Framework for future contributions of TRIUME
- Prepare 2023 review

HILUMI HL-LHC PROJECT	CERN

	Welcome	Yannis Papaphilippou
	New Consistorium room, Uppsala University	08:45 - 09:00
	BBCW results during Run 3 operation	Philippe Belanger
	New Consistorium room, Uppsala University	09:00 - 09:30
	BBCW collimation scenarios for Run 4	Roderik Bruce
	New Consistorium room, Uppsala University	09:30 - 09:45
	BBCW potentials for Run 4	Guido Sterbini
	New Consistorium room, Uppsala University	09:45 - 10:15
	Coffee break	
	New Consistorium room, Uppsala University	10:15 - 10:45
	Present BBWC mechanical design	Alessandro Bertarelli
	New Consistorium room, Uppsala University	10:45 - 11:15
	Infrastructure/Integration/Schedule constraints	Adriana Rossi
	New Consistorium room, Uppsala University	11:15 - 11:35
	Impedance and RF heating	Benoit Salvant
	New Consistorium room, Uppsala University	11:35 - 12:05
	Energy deposition studies	Marta Sabate Gilarte
	New Consistorium room, Uppsala University	12:05 - 12:25
7	Lunch break	
	New Consistorium room, Uppsala University	12:25 - 13:30
	TRIUMF contribution to the BBLR Compensation Project	Oliver Kester
	New Consistorium room, Uppsala University	13:30 - 14:00
	Magnetic field modelling of the wire	Marco Marchetto
	New Consistorium room, Uppsala University	14:00 - 14:30
	Discussion	
	New Consistorium room, Uppsala University	14:30 - 15:00

Thanks in particular to Cecile Noels, Adriana Rossi and Guido Sterbini for the organisation

Let's get WIRED

