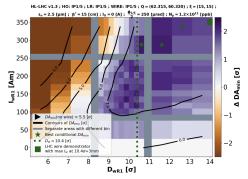


BBCW potentials for Run 4

P. Bélanger, A. Poyet, K. Skoufaris, G. Sterbini on behalf of BBCW team

Our gratitude goes to **HL-LHC**, **CERN** *and* **TRIUMF** *management for the support*, **WP2**/5/13 *for the inspiring discussions and encouragement*, **G. ladarola** *and* **S. Kostoglou** *for helping with the* **xsuite** *code* simulation framework.

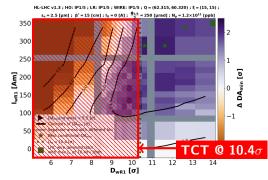
Introduction


Assumption for the simulations

Results

12th HL-LHC Collaboration Meeting, 23rd Sept 2022 BBCW potentials for Run 4

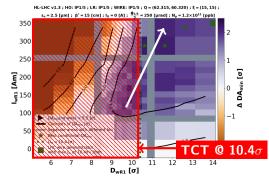
HL-LHC configurations¹



At the cost of $\int I_W dI$, the wire can be pushed away from the beam $\rightarrow \int I_W dI = 450$ Am.

¹From PRAB **24** 074001, 2021

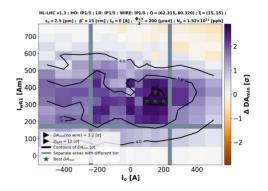
HL-LHC configurations¹



At the cost of $\int I_W dI$, the wire can be pushed away from the beam $\rightarrow \int I_W dI = 450$ Am.

¹From PRAB **24** 074001, 2021

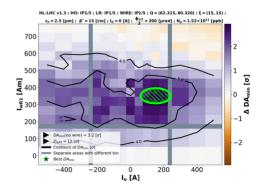
HL-LHC configurations¹



At the cost of $\int I_W dI$, the wire can be pushed away from the beam $\rightarrow \int I_W dI = 450$ Am.

¹From PRAB **24** 074001, 2021

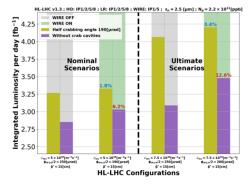
HL-LHC configurations²



Some synergies between the arc octupoles and the wires (at 12 σ).

²From PRAB **24** 074001, 2021

HL-LHC configurations²



Some synergies between the arc octupoles and the wires (at 12 σ).

²From PRAB **24** 074001, 2021

HL-LHC configurations³

Performance gain by extending the levelling reach/time: \rightarrow w/ CC, BBCWs push $\int \mathcal{L}dt$ by 1.8-3.4% \rightarrow w/o CC, BBCWs push $\int \mathcal{L}dt$ by 6.2-12.6%

³From PRAB **24** 074001, 2021

EYETS scenario to fix intensity limitation (HEL, dilution kickers, RF?)

					anaon			
Year	ppb	Virtual lumi.	Days in	θ	β_{start}^*	β_{end}^*	CC	Max.
	$[10^{11}]$	$[10^{34} \text{cm}^{-2} \text{s}^{-1}]$	physics	[µrad]	[cm]	[cm]		PU
2029	1.8	4.4	90	380*	70	30	exp	116
2030	1.8	9.0	120	500	100	20	on	132
EYETS (\approx 5 months) HEL, dilution kickers?								
2031	2.2	13.5	90	500	100	20	on	132
2032	2.2	13.5	160	500	100	20	on	132
2033-34		Long shutdown 4						
2035	2.2	13.5	140	500	100	20	on	132
2036	2.2	16.9	170	500	100	15	on	132
2036	2.2	16.9	200	500	100	15	on	200

HEL cryo connections for efficient installation in EYETS (and avoiding sector warm-up) is extra scope.

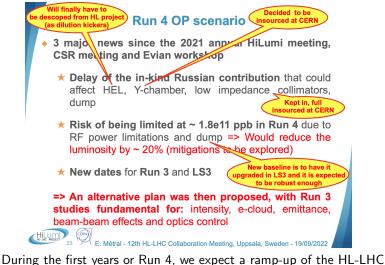
R. Tomas in LHC performance workshop, January 2022

*under review

During the first years or Run 4, we expect a ramp-up of the HL-LHC performance (CC, β^* , ...)

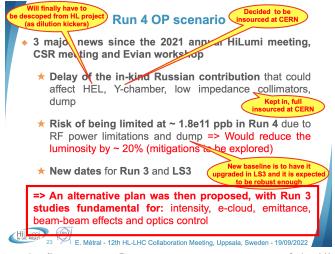
EYETS scenario to fix intensity limitation (HEL, dilution kickers, RF?)

			under review					
Year	ppb	Virtual lumi.	Days in	θ	β_{start}^*	β_{end}^*	CC	Max.
	$[10^{11}]$	$[10^{34} \text{cm}^{-2} \text{s}^{-1}]$	physics	[µrad]	[cm]	[cm]		PU
2029	1.8	4.4	90	380*	70	30	exp	116
2030	1.8	9.0	120	500	100	20	on	132
EYETS (≈5 months) HEL, dilution kickers?								
2031	2.2	13.5	90	500	100	20	on	132
2032	2.2	13.5	160	500	100	20	on	132
2033-	34		Lon	g shutdo	wn 4			
2035	2.2	13.5	140	500	100	20	on	132
2036	2.2	16.9	170	500	100	15	on	132
2036	2.2	16.9	200	500	100	15	on	200


HEL cryo connections for efficient installation in EYETS (and avoiding sector warm-up) is extra scope.

R. Tomas in LHC performance workshop, January 2022

*under review


During the first years or Run 4, we expect a ramp-up of the HL-LHC performance (CC, β^* , ...)

performance (CC, β^* , ...)

During the first years or Run 4, we expect a ramp-up of the HL-LHC performance (CC, $\beta^*,\,\dots)$

BBCW potential for Run 4

• Can we make use of the wire in an early stage of Run 4?

BBCW potential for Run 4

- Can we make use of the wire in an early stage of Run 4?
- What are the BBCW performance before reaching the $\beta^*=15$ cm?

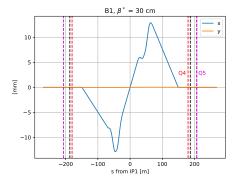
 \rightarrow we will focus on $\beta^*=30$ cm and $N_b = 1.8 \ 10^{11}$ ppb.

Introduction

Assumption for the simulations

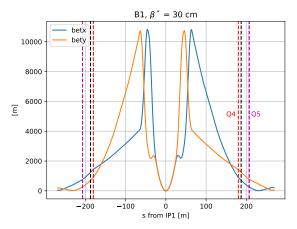
Results

12th HL-LHC Collaboration Meeting, 23rd Sept 2022 BBCW potentials for Run 4


"Reserved" space for the wire ⁴

⁴EDMS 2037987

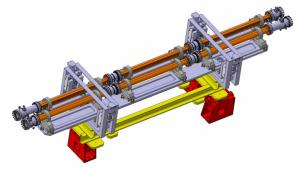
"Reserved" space for the wire ⁴



External to the crossing bump, close to the Q4.

⁴EDMS 2037987

"Reserved" space



 β_y/β_x close to the ones proposed of PRAB 18 121001, 2015.

12th HL-LHC Collaboration Meeting, 23rd Sept 2022 BBCW potentials for Run 4

Proposed wires' layout⁵

1 assembly/side/IP \rightarrow 1 assembly = 3 \times 1-m wire modules/beam 1 module can carry 150 A \rightarrow 450 Am per beam/side/IP

⁵See Alessandro's presentation

Optics at $\beta^* = 30 \text{ cm}$

	s from IP1 [m]	β_x [m]	β_y [m]	β_y/β_x
bbcw.i.3. 4l1 .b1	-189.50	1176.12	632.12	0.54
bbcw.i.2. 4l1 .b1	-188.25	1209.93	664.12	0.55
bbcw.i.1. 4l1 .b1	-187.00	1244.31	696.86	0.56
bbcw.i.1. 4r1 .b1	187.00	698.20	1243.97	1.78
bbcw.i.2. 4r1 .b1	188.25	664.72	1210.73	1.82
bbcw.i.3. 4r1 .b1	189.50	632.10	1177.87	1.86

In the simulations, we consider a 4.5 m assembly and 4 $\times 3$ wires per beams.

At $\beta^* =$ 30 cm, 7 TeV, $\epsilon_n =$ 2.5 μ m

	$\sigma_x [mm]$	σ_y [mm]
bbcw.i.3.411.b1:1	0.63	0.46
bbcw.i.2. 4l1 .b1:1	0.64	0.47
bbcw.i.1. 4l1 .b1:1	0.65	0.48
bbcw.i.1.4r1.b1:1	0.48	0.65
bbcw.i.2. 4r1 .b1:1	0.47	0.64
bbcw.i.3. 4r1 .b1:1	0.46	0.63

16 σ separation \rightarrow pprox10 mm offset wrt the beam.

In the simulation, BBCWs are at the same <code>physical distance</code> from the beam. "BBCW at 16 σ " means that all BBCWs are at

$$16 \max_{BBWCs} \sigma. \tag{1}$$

DISCLAIMER: the present BBCW demonstrators are strongly coupled with the TCT settings. We assume the HL BBCW will be

- NOT embedded in the TCTs
- STILL in the TCTs shadow (→ tight collimators setting are better for the BBCW, i.e. lower *I_w*).

Assuming the unfavourable collimators relaxed settings (TCT at 11.4 σ for $\beta^*=0.15$ m), two scenarios envisaged:

- Scenario A: BBCW at > 16.1 σ at $\beta^*=$ 0.30 m IF TCT position constant in mm
- Scenario B⁶: BBCW at > 11.4 σ at $\beta^* = 0.30$ m IF TCT position constant σ .

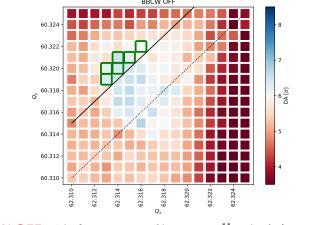
⁶specific MKD-TCT phase constraints are needed.

At $\beta^* =$ 6 m, 0.45 TeV, $\epsilon_n =$ 2.5 μ m

	$\sigma_x [mm]$	σ_y [mm]
bbcw.i.3. 4l1 .b1:1	1.13	0.50
bbcw.i.2. 4l1 .b1:1	1.14	0.49
bbcw.i.1. 4l1 .b1:1	1.16	0.49
bbcw.i.1.4r1.b1:1	0.49	1.17
bbcw.i.2. 4r1 .b1:1	0.49	1.15
bbcw.i.3. 4r1 .b1:1	0.50	1.13

Garage position of the BBCW driven by the injection $\boldsymbol{\sigma}$

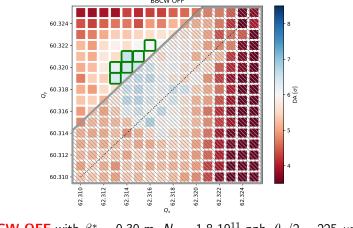
Assuming 25 σ of garage position yields \approx 30 mm offset wrt the beam \rightarrow implication on the stroke of the BBCW movement.



Introduction

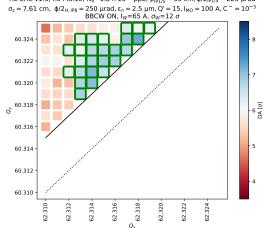
Assumption for the simulations

Results



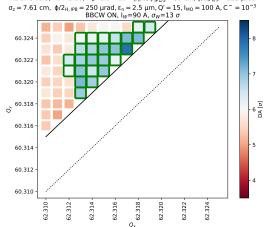
 $\begin{array}{l} HL\text{-LHC v1.5, no MS.10, } N_b \!=\! 1.8 \times 10^{11} \text{ ppb, } \beta^{*}_{|P1/5} \!=\! 30 \text{ cm, } \varphi/2_{|P1/5} \!=\! 225 \text{ µrad} \\ \sigma_z \!=\! 7.61 \text{ cm, } \varphi/2_{H, |P8} \!=\! 250 \text{ µrad, } \epsilon_n \!=\! 2.5 \text{ µm, } Q' \!=\! 15, I_{MO} \!=\! 100 \text{ A, C}^{-1} \!=\! 10^{-3} \text{ BGW OFF} \end{array}$

BBCW OFF with $\beta^* = 0.30$ m, $N_b = 1.8 \ 10^{11}$ ppb, $\theta_c/2 = 225 \ \mu$ rad.



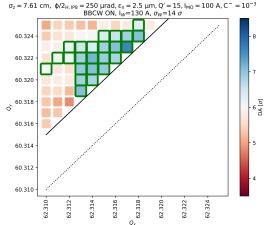
 $\begin{array}{l} \text{HL-LHC v1.5, no MS.10, N_b=1.8 \times 10^{11} \text{ ppb, } \beta^*_{|P1/5}=30 \text{ cm, } \varphi/2_{|P1/5}=225 \text{ } \mu\text{rad}} \\ \sigma_z=7.61 \text{ cm, } \varphi/2_{H, |P8}=250 \text{ } \mu\text{rad, } \epsilon_n=2.5 \text{ } \mu\text{m, } Q^*=15, \text{ } \text{I}_{NO}=100 \text{ A, } \text{C}^-=10^{-3} \text{ } \text{BCW OFF} \end{array}$

BBCW OFF with $\beta^* = 0.30$ m, $N_b = 1.8 \ 10^{11}$ ppb, $\theta_c/2 = 225 \ \mu$ rad.



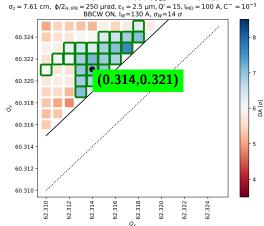
HL-LHC v1.5, no MS.10, $N_b=1.8 \times 10^{11}$ ppb, $\beta_{IP1/5}^*=30$ cm, $\phi/2_{IP1/5}=225$ µrad σ_z = 7.61 cm, $\phi/2_{H, IP8}$ = 250 µrad, ϵ_n = 2.5 µm, Q' = 15, I_{MO} = 100 A, C⁻ = 10⁻³ BBCW ON, I_W =65 A, σ_W =12 σ

BBCW ON, $I_w = 65$ A at 12 σ .



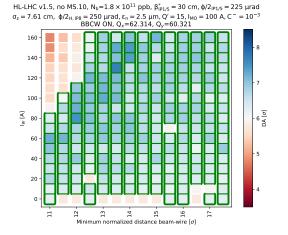
HL-LHC v1.5, no MS.10, $N_b=1.8 \times 10^{11}$ ppb, $\beta^*_{P1/5}=30$ cm, $\frac{\phi}{2}_{P1/5}=225$ µrad $σ_z = 7.61 \text{ cm}, \ φ/2_{H, IP8} = 250 \ µrad, ε_n = 2.5 \ µm, Q' = 15, I_{MO} = 100 \text{ A}, C^- = 10^{-3} BBCW \text{ ON}, I_W = 90 \text{ A}, \sigma_W = 13 \sigma$

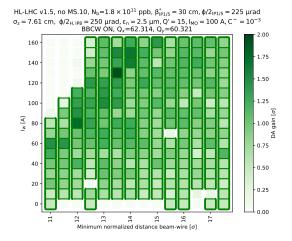
BBCW ON, $I_w = 90$ A at 13 σ .



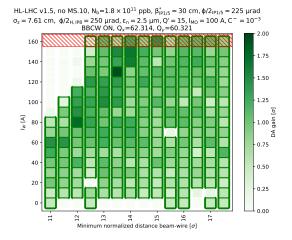
HL-LHC v1.5, no MS.10, $N_b=1.8 \times 10^{11}$ ppb, $\beta^*_{IP1/5}=30$ cm, $\frac{1}{2}$ /2_{IP1/5} = 225 μ rad $\sigma_z = 7.61 \text{ cm}, \ \varphi/2_{\text{H}, \text{IP8}} = 250 \ \mu\text{rad}, \epsilon_n = 2.5 \ \mu\text{m}, Q' = 15, \text{I}_{\text{MO}} = 100 \text{ A}, \text{C}^- = 10^{-3} \text{ BBCW ON}, \text{I}_{W} = 130 \text{ A}, \sigma_W = 14 \ \sigma$

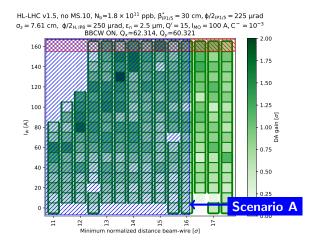
BBCW ON, $I_w = 130$ A at 14 σ .

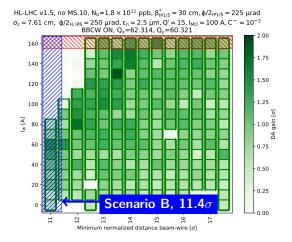


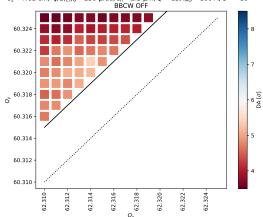

HL-LHC v1.5, no MS.10, $N_b=1.8 \times 10^{11}$ ppb, $\beta^*_{IP1/5}=30$ cm, $\frac{1}{2}$ /2_{IP1/5} = 225 μ rad

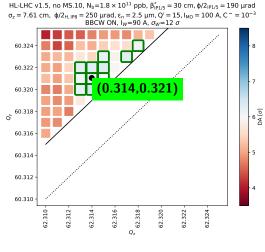
BBCW ON, $I_w = 130$ A at 14 σ .



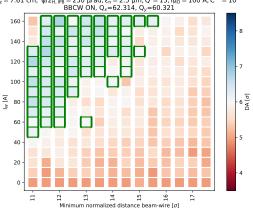


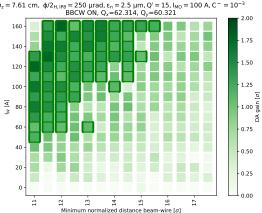




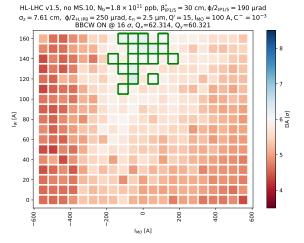


 $\begin{array}{l} \text{HL-LHC v1.5, no MS.10, N_b=1.8 \times 10^{11} \text{ ppb, } \beta_{\text{IP1/5}}^{}=30 \text{ cm, } \varphi/2_{\text{IP1/5}}=190 \text{ } \mu\text{rad}} \\ \sigma_z=7.61 \text{ cm, } \varphi/2_{\text{H,IP8}}=250 \text{ } \mu\text{rad}, \\ \epsilon_n=2.5 \text{ } \mu\text{m, } Q'=15, \\ \text{I}_{MO}=100 \text{ } \text{A}, \\ \text{C}^-=10^{-3} \text{ } \text{B}_{\text{CW}} \text{ } \text{OF} \end{array}$


BBCW OFF with $\beta^* = 0.30$ m, $N_b = 1.8 \ 10^{11}$ ppb, $\theta_c/2 = 190 \ \mu rad$.


BBCW ON at 90 A and 12 σ .

 $\begin{array}{l} \text{HL-LHC v1.5, no MS.10, } N_b \!=\! 1.8 \times 10^{11} \text{ ppb, } \beta_{\text{iPLS}} \!=\! 30 \text{ cm, } \phi/2_{\text{iPLS}} \!=\! 190 \text{ µrad} \\ \sigma_z \!=\! 7.61 \text{ cm, } \phi/2_{\text{i},\text{IPB}} \!=\! 250 \text{ µmd, } \epsilon_n \!=\! 25, \text{ µm, } Q' \!=\! 15, \text{ } \text{I_{00}} \!=\! 100 \text{ A, C}^- \!=\! 10^{-3} \\ \text{BBCW ON, } Q_z \!=\! 62.314, \, Q_y \!=\! 60.321 \end{array}$


Distance vs I_w scan at Q=(0.314, 0.321): up to 2 σ of DA gain

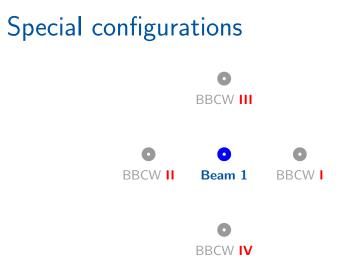
HL-LHC v1.5, no MS.10, $N_b=1.8 \times 10^{11}$ ppb, $\beta^*_{IP1/5}=30$ cm, $\phi/2_{IP1/5}=190$ µrad σ_z = 7.61 cm, $\phi/2_{H,\,IP8}$ = 250 µrad, ϵ_n = 2.5 µm, Q' = 15, I_{MO} = 100 A, C^- = 10^{-3} BBCW ON, Q_x =62.314, Q_y =60.321

Distance vs I_w scan at Q=(0.314, 0.321): up to 2 σ of DA gain

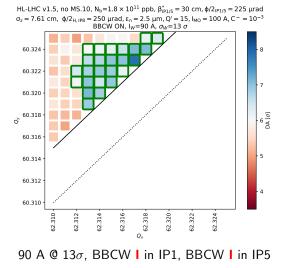
Interplay with arc octupoles

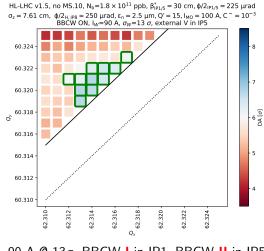
If BBCW too far (16 σ), can the arc octupole help? Marginally.

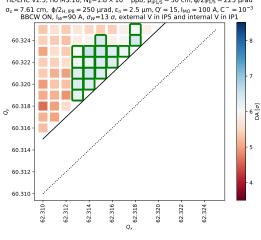
Special configurations


12th HL-LHC Collaboration Meeting, 23rd Sept 2022 BBCW potentials for Run 4

Special configurations

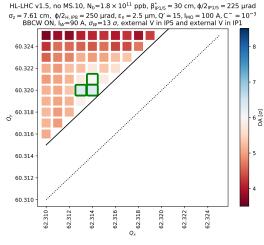



12th HL-LHC Collaboration Meeting, 23rd Sept 2022 BBCW potentials for Run 4

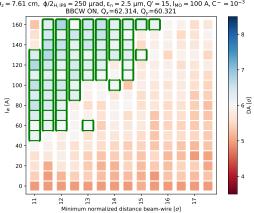


LHC Collaboration Meeting, 23rd Sept 2022 BBCW potentials for I

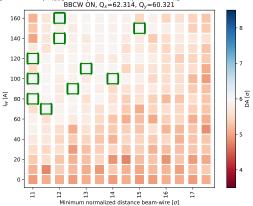
90 A @ 13σ, BBCW I in IP1, BBCW II in IP5



HL-LHC v1.5, no MS.10, $N_b=1.8 \times 10^{11}$ ppb, $\beta^*_{P1/5}=30$ cm, $\frac{\phi}{2}_{P1/5}=225$ µrad

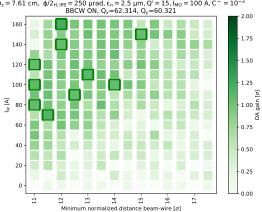

90 A @ 13σ , BBCW III in IP1, BBCW II in IP5

90 A @ 13 σ , BBCW IV in IP1, BBCW II in IP5



HL-LHC v1.5, no MS.10, $N_b{=}1.8\times10^{11}$ ppb, $\beta^*_{\rm IP1/5}{=}30$ cm, $\varphi/2_{\rm IP1/5}{=}190~\mu rad$ σ_z = 7.61 cm, $\phi/2_{H,\,IP8}$ = 250 µrad, ϵ_n = 2.5 µm, Q' = 15, I_{MO} = 100 A, C^- = 10^{-3} BBCW ON, Q_x =62.314, Q_y =60.321

BBCW | in IP1, BBCW | in IP5



 $\begin{array}{l} \mbox{HL-LHC v1.5, no MS.10, N_{b}\!=\!1.8 \times 10^{11} \mbox{ pb}, \beta_{P1/5}^{a}\!=\!30 \mbox{ cm}, \varphi/_{2(P1/5}\!=\!190 \mbox{ µrad}, \\ \mbox{σ_{z}}\!=\!7.61 \mbox{ cm}, \varphi/_{2(P_{1}/5}\!=\!190 \mbox{ µrad}, \\ \mbox{σ_{z}}\!=\!7.61 \mbox{ cm}, \varphi/_{2(P_{1}/5}\!=\!190 \mbox{ µrad}, \\ \mbox{σ_{z}}\!=\!6.314, \end{Q_{z}}\!=\!60.321 \mbox{ }$

BBCW (I+II)/2 in IP1, BBCW (I+II)/2 in IP5

HL-LHC v1.5, no MS.10, $N_b=1.8 \times 10^{11}$ ppb, $\beta^*_{IP1/5}=30$ cm, $\phi/2_{IP1/5}=190$ µrad $\sigma_z = 7.61 \text{ cm}, \ \varphi/2_{H, IP8} = 250 \ \mu rad, \\ \epsilon_n = 2.5 \ \mu m, \\ Q' = 15, \\ I_{MO} = 100 \ A, \\ C^- = 10^{-3}$

BBCW (I+II)/2 in IP1, BBCW (I+II)/2 in IP5

Conclusions

- The BBCW can be used to improve the machine performance in a BB dominated regime: its beneficial impact in an early stage of Run 3 was confirmed by the simulations.
- TCT settings at 11.4 σ for $\beta^*=$ 30 cm are crucial to relax the BBCW HW specifications.
- It could be used to prepare the high intensity beam at 190 μ rad before the CC operational deployment.
- The BBCW commissioning time and overall availability is expected not have a minimum impact to the overall time dedicated to the HL-LHC Physics Program.
- Preliminary results show that the "special configurations" are less effective than the nominal one.

Thank you for your attention.

home.cern