

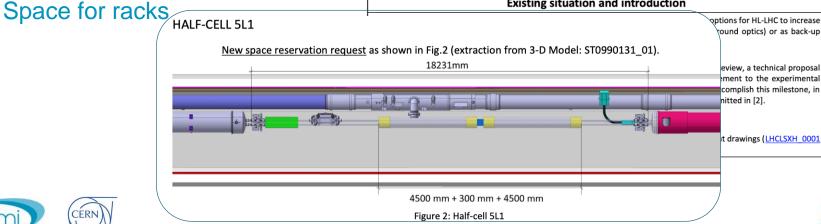
Infrastructure/Integration/Schedule constraints

A. Rossi with contributions from M. Modena, P. Fessia, J. Oliveira, G. Aparicio Cantalapiedra, S.Maridor, Y. Thurel, M. Martino, G. Girardot.

WP2/WP13 HL-LHC Satellite Meeting, Uppsala 2022 - Long-Range Beam-Beam Wire

HL-LHC space reservation

A space reservation of 4.5 m on both beams was made on either sides of IP1/5 = 1 unit per beam per location, in cell 5 (between Q4 and Q5)

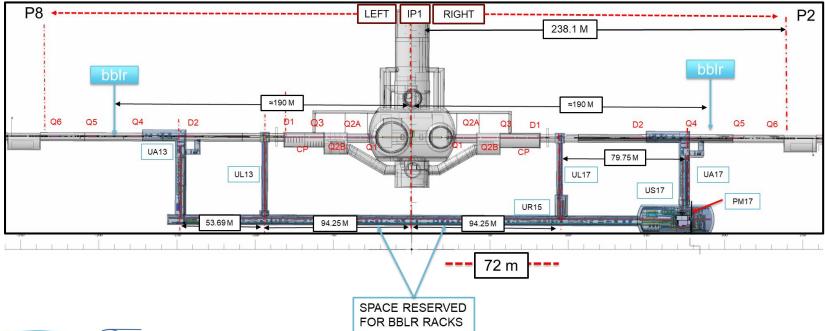

(EDMS NO. 2037987	REV. 1.0	VALIDITY VALID	_
7	REFERENCE : N	FERENCE : NOT REQUIRED		

HL – LHC SPACE RESERVATION

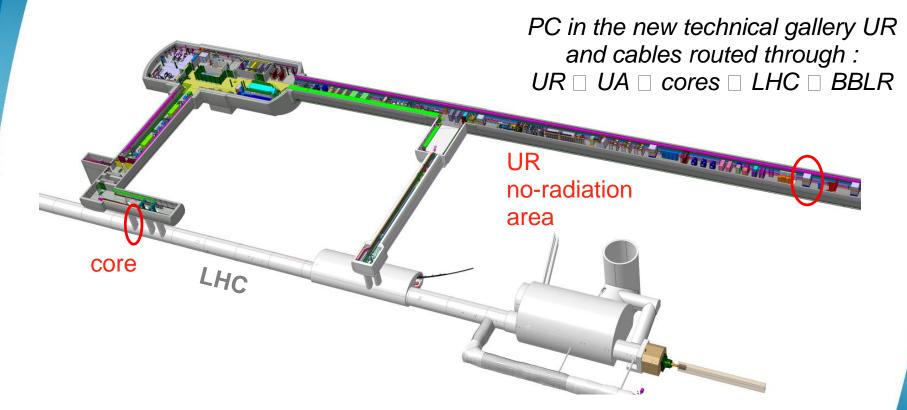
MODIFICATIONS TO THE IR1 AND IR5 OF THE LHC FOR BEAM-BEAM LONG-RANGE COMPENSATOR DEVICES

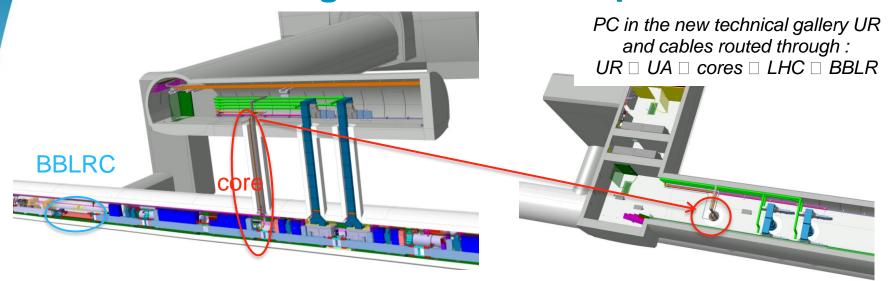
DESCRIPTION					
WP Originator	WP13, PBS: 13.8.0.0.0.0	Date of Issue	2018-10-01		
Equipment	BBLR	CI responsible	A. Rossi		
Drawing	LHCLSXH 0001 and 0002, 0009 and 0010	Document	LHC-BBC-EC-0001 (EDMS <u>503722</u>)		

Existing situation and introduction



HL-LHC space reservation


IP1 ZONE (similar for IP5)

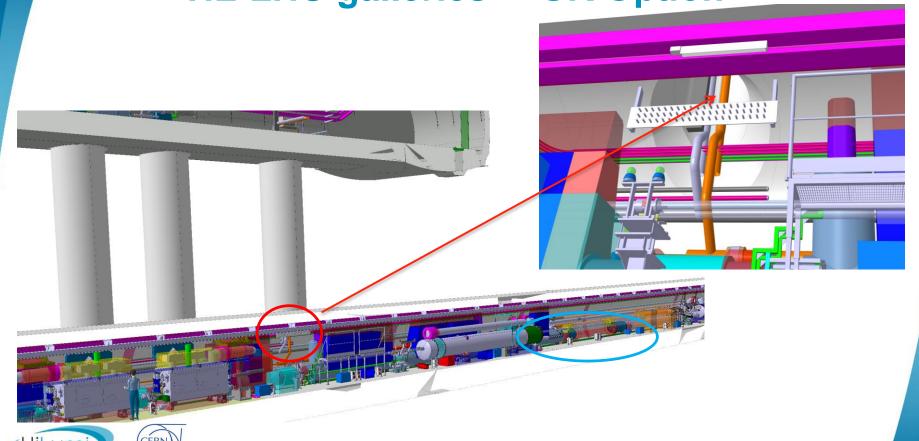

HL-LHC galleries - "UR Option"

HL-LHC galleries - "UR Option"

Pro-1: Finding/building converters of 150A x 60-70V* rating is feasible with commercial units.

Pro-2: Space for racks already reserved.

Con-1: It is not possible to use any existing core: devoted to RF flexwell (fragile) cables, and not to share signal cables with power cables.


Con-2: Heat losses to be managed around the core location.

Split Air Conditioner may be required - study to be done.

HL-LHC galleries - "UR Option"

WP2/WP13 HL-LHC Satellite Meeting, Uppsala 2022 - Long-Range Beam-Beam Wire

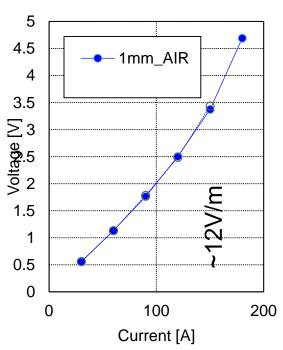
HL-LHC galleries - "RR Option"

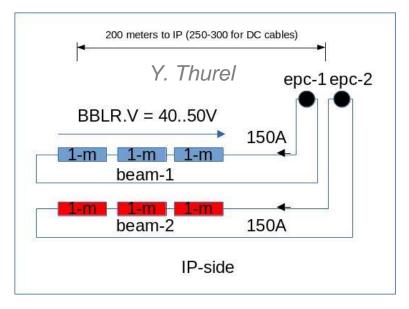
Con-1: This would require **new** radiation tolerant design converters. Effort (design) for only few units (#8).

Con-2: Need to find place in RR(1/5), not studied here.

Pro-1: No need to install DC power cables from tunnel up to UR.

RR (radioactive areas)




PC in the LHC RR alcoves. and cables routed through: $RR \sqcap BBLR$

Powering: series recommended

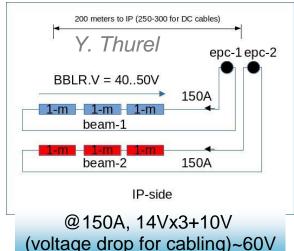
A. Bertarelli et. al, Special Joint HiLumi WP2/WP5 Meeting 22.02.2022

@150A, 14Vx3+10V (voltage drop for cabling) 52V

Powering: series recommended

Power Converter Characteristics

COMBO COMmercial **B**ased c**O**nverter


Converters 01 COMBO Power Rack 5

02 COMBO-DELTA [200 A; 60 V] - HCRPAHL

Converter Type 1 Ouadrant

Control type FGC3 / Ethernet+

Current Accuracy 100 ppm

Ballpark figures:

- 1 rack with 2 converters of 12 kWatts each \approx 60 kCHF => 240 kCHF
 - (1 rack with 1 converters of 18 kWatts each \simeq 50 kCHF => 400 kCHF)
- Cabling expected \simeq **500 kCHF** (to be confirmed)

Schedule constraints

- Cabling should be ideally implemented in the same campaign as for the rest of HL-LHC (LS3)
 - If the power cable have to go in the same core as the RF cables, we should install them before (hybrid solution with bas-bars?) so to minimise impact on RF cables. Thermal studies to be done.
 - If HL-LHC chooses to add another core (review in Nov. 2022), time may be more relaxed, but it would be less expensive/more efficient to do it at LS3.

