Supermassive Black Holes as Detectors for Ultra-light Bosons

Yifan Chen Niels Bohr Institute yifan.chen@nbi.ku.dk

6 January 2023, Norway 27th Nordic Particle Physics Meeting

(日) (同) (日) (日)

ndforskningsfond

Event Horizon Telescope: an Earth-sized Telescope

- For single telescope with diameter D, the angular resolution for photon of wavelength λ is around ^λ/_D;
- VLBI: for multiple radio telescopes, the effective D becomes the maximum separation between the telescopes.

on the moon from the Earth. $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle$

As good as being able to see

Supermassive Black Hole (SMBH) M87* [EHT 19' 21']

Total intensity *I*

Linear polarization Q, UEVPA $\chi \equiv \arg(Q + i \ U)/2$

- First time ever: shadow and the ring;
- Ring size determines $6.5 \times 10^9 M_{\odot}$;
- Polarization map reveals magnetic field structure.
- Four days' observations show slight difference.

From other observations:

- Nearly extreme Kerr black hole: $a_J > 0.8$;
- Almost face-on disk with a 17° inclination angle;
- ► Rich information under strong gravity, what else can we learn?

Ultralight Bosons: $\Psi = a, B^{\mu}$ and $H^{\mu\nu}$

- Axion: hypothetical pseudoscalar motivated by strong CP problem.
- Extra dimensions predict a wide range of ultralight boson mass:

$$-rac{1}{2}
abla^{\mu}a
abla_{\mu}a-rac{1}{4}B^{\mu
u}B_{\mu
u}+\mathcal{L}_{\mathrm{EH}}(\mathcal{H})-V(\Psi)$$

Dimensional reduction from higher form fields: e.g. $g^{MN}(5D) \rightarrow g^{\mu\nu}(4D) + B^{\mu}(4D)$, $B^{M}(5D) \rightarrow B^{\mu}(4D) + a(4D)$.

• **Coherent wave** dark matter candidates when $m_{\Psi} < 1$ eV:

$$\Psi(\mathbf{x}^{\mu}) \simeq \Psi_0(\mathbf{x}) \cos \omega t; \qquad \Psi_0 \simeq \frac{\sqrt{
ho}}{m_{\Psi}}; \qquad \omega \simeq m_{\Psi}.$$

(日) (日) (日) (日) (日) (日) (日) (日)

Superradiance and Gravitational Atom

• Gravitational Atom between BH and axion cloud:

BL coordinate : $\Psi^{\text{GA}}(x^{\mu}) = e^{-i\omega t} e^{im\phi} S_{lm}(\theta) R_{lm}(r)$,

 Superradiance [Penrose, Zeldovichi, Starobinsky, Damour et al]: bosons' wave-functions are exponentially amplified from extracting BH rotation energy when

Compton wavelength $\lambda_c \simeq$ gravitational radius r_g .

Supermassive black holess as detectors for ultralight bosons:

$$M_{BH} \sim 10^9 M_{\odot} \leftrightarrow m_{\Psi} \sim 10^{-21} eV.$$

► Superradiant cloud can be significantly denser than dark matter profile, e.g., $a_{\max}^{GA} \simeq f_a$ for axions [Yoshino, Kodama 12' 15', Baryakht et al 20'].

Hunting Axions with Event Horizon Telescope

Polarimetric Measurements

based on arxiv: 1905.02213, Phys. Rev. Lett. **124** (2020) no.6, 061102, arxiv: 2105.04572, Nature Astron. **6** (2022) no.5, 592-598, arxiv: 2208.05724, JCAP **09** (2022), 073.

YC, Chunlong Li, Yuxin Liu, Ru-Sen Lu, Yosuke Mizuno, Jing Shu, Xiao Xue, Qiang Yuan, Yue Zhao, Zihan Zhou.

Axion QED: Achromatic Birefringence [Carroll, Field, Jackiw 90']

$$\mathcal{L}=-rac{1}{4}F_{\mu
u}F^{\mu
u}-rac{1}{2}g_{a\gamma}aF_{\mu
u}\widetilde{F}^{\mu
u}+rac{1}{2}\partial^{\mu}a\partial_{\mu}a-V(a),$$

Chiral dispersions under axion background:

$$\begin{split} [\partial_t^2 - \nabla^2] \mathcal{A}_{L,R} &= \mp 2 g_{a\gamma} n^{\mu} \partial_{\mu} a \, k \, \mathcal{A}_{L,R}, \qquad \omega_{L,R} \sim k \mp g_{a\gamma} n^{\mu} \partial_{\mu} a. \\ n^{\mu}: \text{ unit directional vector} \end{split}$$

Shift of electric vector position angle of linear polarization:

$$\begin{array}{lll} \Delta\chi & = & g_{a\gamma} \int_{\rm emit}^{\rm obs} n^{\mu} \partial_{\mu} a \ dl \\ & = & g_{a\gamma} [a(t_{\rm obs}, {\bf x}_{\rm obs}) - a(t_{\rm emit}, {\bf x}_{\rm emit})], \end{array}$$

▶ Topological effect for each photon: only $a(x_{emit}^{\mu})$ and $a(x_{obs}^{\mu})$ dependent.

Axion Cloud and Birefringence

Extended sources, plasma and curved space-time effects?

Covariant radiative transfer [IPOLE simulation]

with an accretion flow model outside SMBH:

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Stringent Constraints on Axion-Photon Coupling

Uncertainty of EVPA in [EHT 21']:

 \rightarrow dimensionless axion photon coupling $c \equiv 2\pi g_{a\gamma} f_a$:

Next-generation EHT is expected to significantly increase sensitivity.

э.

Birefringence from Soliton Core Dark Matter

• Ultralight axion dark matter forms soliton core in the galaxy center. Quantum pressure balences gravitational interactions $a \sim 10^{10}$ GeV.

- Linearly polarized photon from pulsar. [Liu et al 19' Caputo et al 19']
- Polarized radiation from Sgr A*. [Yuan, Xia, YC, Yuan et al 20']
- Coherent signals at each pixel increase the sensitivity.

Photon Ring Astrometry

for Superradiant Clouds

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

based on arXiv:2211.03794,

YC, Xiao Xue, Richard Brito, Vitor Cardoso.

Photon Ring

Bound solutions of Kerr null geodesics: photons propagating multiple times around BH enhance intensity on the image plane:

- Autocorrelation for intensity fluctuations: $\begin{array}{l} \mathcal{C}(\mathcal{T}, \Phi) \equiv \\ \iint \mathrm{d}\rho \, \mathrm{d}\rho' \rho \, \rho' \left\langle \Delta I(t, \rho, \varphi) \Delta I(t+\mathcal{T}, \rho', \varphi + \Phi) \right\rangle, \stackrel{\overset{\omega}{\succ}^{20}}{\mapsto} \\ \text{peaks at } \mathcal{T} = \tau_0 \text{ and } \Phi = \delta_0. \end{array}$
- Precise test of general relativity → astrometry for new physics?

Gravitational Atom-induced Geodesics Deflections

► Real vector or tensor clouds generate oscillating metric perturbations $g_{\mu\nu} \simeq g_{\mu\nu}^{\rm K} + \epsilon h_{\mu\nu}$ that deflect geodesics $x^{\mu} \simeq x_{(0)}^{\mu} + \epsilon x_{(1)}^{\mu}$:

Two phases of evolution:

Perturbative generation of oscillatory deviations;

Photon ring instability leads to exponential growth of the deviations.

Photon Ring Autocorrelations as Astrometry

For lensed photons propagating n half-orbits around BH:

Oscillating azimuthal lapse $\Delta \Phi^n / \epsilon = x^{\phi}_{(1)}(\lambda_n) - x^{\phi}_{(1)}(\lambda_0)$.

n = 2 photon ring autocorrelation can probe large unexplored parameter space of cloud mass.

ΔФ

Summary

- Rotating supermassive black holes are powerful detectors for ultralight bosons due to superradiance.
- Linearly polarized radiation from dense axion field saturating $a \simeq f_a$: Oscillating axion background \rightarrow EVPA oscillates. $c \equiv 2\pi g_{a\gamma} f_a$ constraints from EHT polarimetric measurements. Next-generation EHT can significantly improve the constraints.
- Gravitational atoms induce oscillatory metric perturbations that deflect photon ring geodesics.

Exponential growth of geodesics deviation in nearly bound orbit due to photon ring instability.

EHT photon ring autocorrelation constrains large unexplored parameter space of cloud mass.

Thank you!

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Appendix

<□ > < @ > < E > < E > E のQ @

Weakly Saturating Axion Cloud

• Strong self-interaction region $a^{\text{GA}} \simeq f_a$ happens when $f_a < 10^{16}$ GeV:

$$V(a) = m_a^2 f_a^2 \left(1 - \cos \frac{a}{f_a} \right) = \frac{m_a^2 a^2}{2} - \frac{m_a^2 a^4}{24f_a^2} + \dots;$$

A quasi-equilibruim phase where superradiance and non-linear interaction induced emission balance each other with a^{GA}_{max} ≃ O(1) f_a.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

[Yoshino, Kodama 12' 15', Baryakht et al 20']

Axion Cloud and Birefringence

• Axion cloud saturates
$$f_a$$
 due to self-interactions:
 $a^{GA}(x^{\mu}) \simeq R_{11}(\mathbf{x}) \cos [m_a t - \phi] \sin \theta;$
 $a^{GA}_{max} \simeq \mathcal{O}(1) f_a;$
 $\omega \simeq m_a.$
• $g_{a\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} \rightarrow \text{achromatic birefringence to EVPA } \chi \equiv \arg(Q + i \ U)/2:$
Local frame : $\frac{d(Q + i \ U)}{ds} = j_Q + i \ j_U + i \left(\rho_V^{FR} - 2g_{a\gamma} \frac{da^{GA}}{ds}\right) (Q + i \ U).$
Intensity weighted
 $\Delta \langle \chi(\varphi) \rangle$
each photon:
 $\Delta \chi \approx g_{a\gamma} \times a^{GA}(\chi^{\mu}_{emit})$

φ

• $\Delta \langle \chi(\varphi) \rangle$: propagating wave along φ on the sky plane BL coordinate: $a^{GA} \propto \cos[m_a t - \phi] \rightarrow \Delta \langle \chi(\varphi) \rangle \propto \mathcal{A}(\varphi) \cos[m_a t + \varphi + \delta(\varphi)].$

Axion Birefringence for RIAF around M87* (IPOLE simulation)

 $\Delta \langle \chi(\varphi) \rangle = \mathcal{A}(\varphi) \cos[\mathbf{m}_{a}t + \varphi + \delta(\varphi)].$

Scan axion mass: $\alpha \equiv r_g m_a \in [0.10, 0.44]$ with period [5, 20] days.

- $\delta(\varphi) \approx -5 \alpha \sin 17^{\circ} \cos \varphi$: phase delay at different φ .
- Asymmetry of $\mathcal{A}(\varphi) = \mathcal{O}(1)g_{a\gamma}f_a$: washout from lensed photon with $\delta_{12} = \omega\delta t - \delta\phi!$

Axion Birefringence for RIAF around M87* (IPOLE simulation)

 $\Delta \langle \chi(\varphi) \rangle = \mathcal{A}(\varphi) \cos[\mathbf{m}_{a}t + \varphi + \delta(\varphi)].$

Scan axion mass: $\alpha \equiv r_g m_a \in [0.10, 0.44]$ with period [5, 20] days.

- $\delta(\varphi) \approx -5 \alpha \sin 17^{\circ} \cos \varphi$: phase delay at different φ .
- Asymmetry of A(φ) = O(1)g_{aγ}f_a: washout from lensed photon with δ₁₂ = ωδt − δφ!

Prospect for next-generation EHT

• Correlation between $\Delta \chi$ at different radius and frequency.

At 86 GHz, lensed photon is suppressed due to higher optical thickness.

- Longer and sequential observations.
- Better resolution of EVPA.
- Better understanding of accretion flow and jet. Intrinsic variations of EVPA from GRMHD simulation?

Prospect for next-generation EHT

• Correlation between $\Delta \chi$ at **different radius** and frequency.

At 86 GHz, lensed photon is suppressed due to higher optical thickness.

イロト 不得 トイヨト イヨト

3

Longer and sequential observations.

- Better resolution of EVPA.
- Better understanding of accretion flow and jet. Intrinsic variations of EVPA from GRMHD simulation?

Superradiant evolution of

the shadow and photon ring of Sgr A^*

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

based on arxiv: 2205.06238, Phys. Rev. D **106** (2022) no.4, 043021.

YC, Rittick Roy, Sunny Vagnozzi, and Luca Visinelli.

Superradiant Evolution for Bosons

Superradiant evolution for scalar, vector or tensor \rightarrow spin decreases:

Superradiant timescale ∝ M_{BH}, and is shorter for vector or tensor due to l = 0 and j = m = 1 or 2 from intrinsic spin. ~ O(10) yrs for vector or tensor outside SgrA*.

Large Inclination Angle: Shadow Drift

- Center of the shadow contour drifts ~ O(1)r_g once the spin decreases. The drift is more manifest at large inclination angles.
- ► Resolution to the shadow center benefits from long observation time ~ O(1) yr.

Low Inclination Angle: Azimuthal Lapse

At low inclination angles,

photon ring autocorrelation for intensity fluctuations: $C(T, \varphi) \equiv \iint dr dr' r r' \langle \Delta I(t, r, \phi) \Delta I(t+T, r', \phi+\varphi) \rangle$ peaks at $T = \tau_0$ and $\varphi = \delta_0$, where δ_0 is the azimuthal lapse.

• δ_0 is sensitive to spin evolution due to frame dragging.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

[Chael Palumbo]

Accretion Flow around M87*

- ► EHT polarimetric measurements prefer Magnetically Arrested Disk with vertical *B* around M87^{*}.
- Analytic model: sub-Kep radiatively inefficient accretion flow:

• Dimensionless thickness parameter H = 0.05 and 0.3 as benchmark.

EHT Polarization Data Characterization

Four days' polarization map with slight difference on sequential days:

Uncertainty of the azimuthal bin EVPA from polsolve:

ranging from $\pm 3^{\circ}$ to $\pm 15^{\circ}$ for the bins used.

Landscape of SMBH and Accretion Flow (IPOLE simulation)

Horizon scale SMBH landscape with nnngEHT (space, L2):

Universal birefringence signals for direct emission only:

Axion cloud can't keep growing exponentially. What's the fate of it?

- Self interaction of axion becomes important for f_a < 10¹⁶ GeV. [Yoshino, Kodama 12', Baryakht et al 20']
- ▶ Black hole **spins down** until the superradiance condition is violated for $f_a > 10^{16}$ GeV. [Arvanitakia, Dubovsky 10']
- Formation of a binary system leads to the decay/transition of the bound state. [Chia et al 18']
- Electromagnetic blast for strong (large field value) axion-photon coupling. [Boskovic et al 18']

Black Hole Spin Measurements [Arvanitakia et al 10' 14']

• Comparing the timescale between the superradiance and BH accretion, a BH with large spin can typically exclude axion with $f_a > 10^{16}$ GeV.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Gravitational Collider [Chia et al 18']

- Resonant transition from one bound state to another happens when orbital frequency Ω matches the energy gap.
- Due to the GW emission of the binary system, Ω(t) slowly increases and scan the spectrum.
- Orbits could float or shrink dependent on the transition.