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Introduction
Recurring questions about how to efficiently and precisely (enough) 
calculate the global significance 𝑍!"#$%" of a potential new resonance
when a scan over a mass range yields a local significance 𝑍"#&%" at a 
particular mass value

Spåtind 2023 GP-based LEE calculation 1

1. Typical resonance search (bump hunt)
2. Look-elsewhere effect (trials factor)
3. Gaussian Processes
4. Leveraging Gaussian Processes for LEE/TF

a) Given a covariance, estimate trials factor
b) Estimating covariance in presence of background



Typical bump hunt

• Fit signal and background models to invariant mass spectrum

• Vary the mass parameter 𝑚 of a hypothetical signal across the spectrum

• Calculate 𝑝!, the probability to observe an excess of the background at least as big as the one
we see in the data
• Hope to see a narrow region with 𝑝! ≪ 1
• Report «local» significance (𝑍 ≡ 𝑁𝜎)
• Take into account trials factor (LEE)
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Look-elsewhere effect (LEE) and Trials factor (TF)

• We focussed on the peak with maximum significance
• A peak from a background fluctation could arise

anywhere in the spectrum: we have to «look
elsewhere»
• The 𝑝" must be increased by a «trials factor»:

This will give us a «global» 𝑝" and corresponding 
global 𝑍 with 𝑍#$%&'$ < 𝑍$%('$
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Trials factor 𝑓) ≡ 𝑝%
#$%&'$/𝑝"$%('$



3 LEE options
1. Outdated rule-of-thumb

𝑓! ≃ Δ𝑚/𝜎"
2. Estimate by brute force – fit a number of 

background-only pseudo-datasets or «toys»
3. Use a cutting-edge asymptotic 

approximation («G&V»)
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Gross & Vitells Trials Factors (LEE)
• An elegant approximation based on average «up-

crossings» 𝑁!"
• Count «up-crossings» at low significance 𝜎" and 

extrapolate to high significance 𝑍#$%&# , i.e. 

𝑝!
"#$%&# ≤ 𝑝!#$'&# + 𝑁() 𝜎* 𝑒+

!"#$%"
& '()

&

&

• Can use relatively small number of MC experiments 
to estimate 𝑁'( 𝜎" , but this can still be challenging

• In worst case can use the data for rough estimate of 
𝑁'( 𝜎"
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Gross & Vitells Trials Factors (LEE)

• What to do if not comfortable with large statistical 
uncertainty on TF (𝑍)#$*&#), besides throwing a lot of 
carbon at the problem?

• What to do about obvious over-conservatism of G&V 
UL below ~3𝜎?

• Can we do better?!

• G&V article builds on extensive previous work on 
random 𝜒+ and Gaussian fields.

• I noticed the connection Rasmussen&Williams make 
in «Gaussian Processes for Machine Learning» (2006) 
between correlation length of Gaussian process and 
up-crossings.
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Gaussian process

• A GP is defined by a mean function 𝜇(𝑥) and a covariance function Σ(𝑥, 𝑥2). 
• In a typical (Bayesian) analysis one starts with priors and “trains” the process 

with data to obtain a posterior prediction 𝜇∗ 𝑥 , Σ∗(𝑥, 𝑥2). 
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Rasmussen and Williams



Gaussian process

• Similar example
𝜇 𝑥 = 0
Σ 𝑥, 𝑥2 = 𝐴4𝑒5 656!

"
/(4""),

with 𝐴 = 𝑙 = 1 and train on 1 
noiseless and 1 noisy observation.
• Random samples of the posterior GP 

look a lot like signed local 
significance (𝑍) scans! Same is true 
for prior.
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Gausssian process for LEE!

• Instead of defining priors and training the GP, we do something completely 
different: Construct the covariance directly and as efficiently as possible 
from information encoded in the fitting procedure used in the resonance 
search. 
• 𝜇 𝑥 ≡ 𝑍(𝑚) = 0 asymptotically under the background hypothesis

• Once we have Σ(𝑚,𝑚$), it is computationally cheap to sample the GP 
(“generate GP-toys”) and measure with high precision:
• up-crossings
• directly the global 𝑝!, especially at low and moderate signficance, but also at 

moderately high 𝑍#$'&#
• It was already worked out for us how to calculate the average up-crossings 

at any significance level directly from the covariance in “Random 
Vibrations. Analysis of Structural and Mechanical Systems”, Lutes, L.D. and 
Sarkani, S., Butterworth Heinemann, Boston (2004).
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A new (!) set of Asimov (background) datasets
• Sum the covariances Σ+(𝑚,𝑚,) resulting from 

individual background (bin 𝑖) fluctuations.
• The standard background-only toy is a series of 

independent fluctuations!
• Covariances for independent sources add linearly
• There are cases with correlated data - not covered here

• Fitted signal amplitude 𝜇̂ 𝑚 must be proportional 
to the amount of «signal». A single fluctuation is a 
placeholder for all possible fluctuations of the bin in 
question, just like the fit to a standard Asimov 
dataset is a placeholder for an ensemble of fits to 
random toy datasets.
• Last step is a normalization (inspired by Gibbs for 

his GP kernel function) to render Σ(𝑚,𝑚) = 1.
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Various paths to the trials factor (and 𝑍%&'()&)
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(model in G&V articve)



Various studies and cross-checks

• 3 different statistical models: 
1) G&V model based on background template,
2) parametric background inspired by 𝐻 → 𝛾𝛾, and 
3) inspired by 𝐻 → 𝛾𝛾 with additional scan over width of mass peak
• We (more precisely J) reproduce the published G&V example results (1)
• 2 different software implementations: python (published results) and 

MATLAB (cross-check)
• Effect of poor choice of bin width (affects sensitivity, but no bias)
• 10x larger data sample for G&V model (smaller diff. BF-GP toys)
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SigCorr: Python software on gitlab.cern.ch

• A framework to study the trials factor 
• Several ways to estimate the trials factor 

(see figure)
• Utilities that consistently operate on 

defined data structures that allow the 
user to build their own pipeline
• See the docs (sigcorr.docs.cern.ch/dev/) 

for installation details, usage examples 
and tutorials.
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Conclusions
• We propose to model the covariance of the significance 

for bump hunts with fit-scans of special datasets 
consisting of Asimov background plus 1-bin-at-a-time 
fluctuations. 

• With 3 quite different toy models of searches we have 
excellent agreement between large samples of brute-
force toys and GP-toys (and reproduce the G&V 
published result on their toy model).

• The G&V approximation for high local significances 
based on 𝑁'( at low significance is still important, but 
now we have a GP-based method that gives precise and 
accurate results for moderate to low significances as 
well as precise and accurate estimates of the up-
crossings at low significance.

• We will soon submit a publication showing how to 
obtain an estimate of the covariance with only a single 
Asmimov fit (and some derivative calculations) with the 
same accuracy as our previous, already carbon-friendly, 
procedure.
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Backup
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Significance scans of 2-D toys
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Special Asimov toy GP toyBrute-force toy



Covariance for 2-D scan of mass and width
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2 x 2-D (mass and width) → 4-D covariance matrix
Unwrapped into 2-D



Gross & Vitells Trials Factors (LEE)

• Using high-Z approximation of 𝜒,- , can show that: 𝑓. ≃ 1 + /
-
𝒩𝑍#$'&#, where 𝒩 is 

«effective # of independent search regions»
• Outdated rule-of-thumb is ~OK for 𝑍#$'&# ≃ 2 − 3, but wrong for large Z! 
• Bob Cousins called this «an important discovery»!
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Prediction of up-crossings?

• G&V: «The function C(θ) [that 𝑁'( 𝜎" depends on] can
in general be difficult to calculate.»

• The G&V results are based on the properties of random 
Gaussian fields, i.e. Gaussian Processes
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Analytic prediction of up-crossings?

• Adler (1981) Theorem 4.1.1 states that expectation value of number of up-crossings per unit interval
at level 𝑢 is 

𝔼 𝑁! = "
#$

%&!!(#)

&(()
𝑒%!%/(#& ( ), 

where 𝑘 𝑥, 𝑥+ = 𝑘 𝑥 − 𝑥+ , i.e., a «stationary kernel» (i.e. covariance)
• For exp-squared kernel with correlation length 𝑙, 𝑘 𝑥 = 𝜎#𝑒%,%/#-% , we have

𝔼 𝑁! =
1
2𝜋𝑙

𝑒%!%/(#.%)

• For significance field 𝑢 ≡ 𝑍 and 𝜎 ≡ 1
• 𝔼 𝑁! = "

#$%
𝑒&'&/# (basis of G&V extrapolation from low to high Z)
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Analytic prediction of up-crossings?

• For mass range Δ𝑚 and constant Gaussian mass resolution 𝜎, = 𝑙 (*), the predicted
average number of up-crossings at any threshold is

𝔼 𝑛9 = :;
4<=#

𝑒5>"/4

• (*) A comment in Frate, Cramner et al., Modeling Smooth Backgrounds and Generic 
Localized Signals with Gaussian Processes, arXiv:1709.05681v1 about an additional 2 is 
misleading for the significance field.
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https://arxiv.org/abs/1709.05681


Analytic prediction of up-crossings for 𝜎!(𝑚)?

• Propose𝔼 𝑁9 =
∫#$
#% 𝔼 A&(;) B;

∫#$
#% B;

= C
4<
𝑒5

'"
" 𝔼( C

" ;
)

• For linear 𝜎(𝑚), e.g. «Gibbs kernel» (next page), we have 

𝑙 𝑚 = 𝑙D + (𝑚 −𝑚D)(𝑙C − 𝑙D)/(𝑚C −𝑚4)

and find

𝔼 𝑛9 =
1

𝑙C − 𝑙D
ln(

𝑙C
𝑙D
)
1
2𝜋

𝑒5
>"
4
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Two basic Gaussian Process kernels

• Gaussian signal with constant mass resolution
• The unit «exponential-squared» kernel: 

Σ 𝑚,𝑚-, 𝜎, = 𝑒. ,.,! "/+0#"

• Example with 𝜎/ = 5 GeV (8.3 bins)
• Gaussian signal with mass-dependent resolution 𝜎0 𝑚 :

• The unit «Gibbs» kernel: 

Σ m,m- = +0# , 0#(,!)
0#" (,)30#" ,! 𝑒. ,.,! "/( 0#" (,)30#" ,! ).

• Example with linear 𝜎0(𝑚) between 2-10 GeV (2.7-13.3 bins)
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Gaussian Process toys prediction of up-crossings?

• A Gaussian Process for a set of points 𝒙 is defined by a mean function 𝜇 𝒙 and a 
kernel 𝑘 𝒙, 𝒙) , i.e. a covariance matrix Σ(𝒙, 𝒙)).

• Fitting a signal model to an ensemble of background spectra at a particular mass
hypothesis 𝑥* should result in mean significance of 0 and standard deviation of 1. 

• The shape of the signal model must strongly influence the covariance between 2 
points Σ 𝒙, 𝒙) , however, is it a good approximation to neglect the influence of
background?

• With 𝜇 𝒙 = 0 and Σ 𝒙, 𝒙) in hand we can easily generate huge numbers of MC 
experiments for 𝑍(𝑚) from the multivariate Gaussian distribution or «GP-toys»! 
• No need to perform zillions of time-consuming fits!
• Reliable results for small 𝑍!
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Random samples of 
background-only 𝑍-GP’s
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20 random GPs from Gibbs kernel
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Typical bump hunt

• At the LHC we often use 𝑞& ≡ −2 ln ℒ(&,),
*+)

ℒ(,-,),**+)

• 𝜃 is a vector of nuisance parameters 
(background, systematics)

• 𝑚 is the mass parameter we are scanning
over

• 𝜇 is the amplitude or «strength» of the signal

• 𝑞& is distributed as 𝜒./ for background and large
enough data samples (asymptotic regime)

• 𝑝& is the upper-tail probability 𝑝& ≡ 𝑃(𝑞& ≥ 𝑞&012)

• 𝑞& corresponds to significance of excess, e.g. 
𝑞& = 16 ⟹ 𝑍 = 4, 𝑖. 𝑒. 4𝜎

• Use MC «toys» beyond asymptotic regime for 
𝑃(𝑞& ≥ 𝑞&012)
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3 LEE options

1. Outdated rule-of-thumb
𝑓! ≃ Δ𝑚/𝜎"

2. Estimate by brute force – fit a number of 
background-only pseudo-datasets or «toys»

3. Use an asymptotic approximation («G&V»)
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