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Introduction

Recurring questions about how to efficiently and precisely (enough)
calculate the global significance Z9°4! of 3 potential new resonance
when a scan over a mass range yields a local significance Z'9¢4! at a
particular mass value

1. Typical resonance search (bump hunt)
. Look-elsewhere effect (trials factor)

2
3. Gaussian Processes
4

. Leveraging Gaussian Processes for LEE/TF

a) Given a covariance, estimate trials factor
b) Estimating covariance in presence of background



Typical bump hunt
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* Fit signal and background models to invariant mass spectrum
Vary the mass parameter m of a hypothetical signal across the spectrum

Calculate p,, the probability to observe an excess of the background at least as big as the one
we see in the data

* Hope to see a narrow region with py < 1

* Report «local» significance (Z = No)

* Take into account trials factor (LEE)
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Look-elsewhere effect (LEE) and Trials factor (TF)

* We focussed on the peak with maximum significance

* A peak from a background fluctation could arise

anywhere in the spectrum: we have to «look
elsewhere»

* The pg must be increased by a «trials factor»:
This will give us a «global» py and corresponding

global Z with Z9tobal  zlocal

. lobal
Trials factor fr = pJ * " /pioc™
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3 LEE options

1. Outdated rule-of-thumb
fr = Am/o,,

2. Estimate by brute force — fit a number of
background-only pseudo-datasets or «toys»

3. Use a cutting-edge asymptotic
approximation («G&V»)

SPECIAL ARTICLE - TOOLS FOR EXPERIMENT AND THEORY

Eilam Gross and Ofer Vitells
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Gross & Vitells Trials Factors (LEE)

An elegant approximation based on average «up-
crossings» (Nyy)

Count «up-crossings» at low significance oy and
extrapolate to high significance Z;,cq; , i-€.

2 2
_Zlocal~Ct

lobal
pogo a < p(l)ocal+<Nup(O.t)>e 5

Can use relatively small number of MC experiments
to estimate (Nup (0¢)), but this can still be challenging

In worst case can use the data for rough estimate of
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Gross & Vitells Trials Factors (LEE)

What to do if not comlf%rtﬁble with large statistical
uncertainty on TF (Z9°9°%%), besides throwing a lot of
carbon at the problem?

What to do about obvious over-conservatism of G&V
UL below ~3a?

Can we do better?!

G&V articlze builds on extensive previous work on
random y“ and Gaussian fields.

| noticed the connection Rasmussen&Williams make
in «Gaussian Processes for Machine Learning» (2006)
between correlation length of Gaussian process and
up-crossings.

GP-based LEE calculation
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(Gaussian process

1.1 A Pictorial Introduction to Bayesian Modelling

Rasmussen and Williams

0 0.5 1 0
input, x

input, x
(a), prior (b), posterior

* A GP is defined by a mean function u(x) and a covariance function Z(x, x").

* In a typical (Bayesian) analysis one starts with priors and “trains” the process
with data to obtain a posterior prediction u*(x), Z*(x, x").
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(Gaussian process

e Similar example
ux) =0 )
N(x,x") = Aze—(x—x’) /(212)’
withA =1 =1andtrainon 1
noiseless and 1 noisy observation.

 Random samples of the posterior GP
look a lot like signed local
significance (Z) scans! Same is true
for prior.
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Gausssian process for LEE!

* Instead of defining priors and training the GP, we do something completely
different: Construct the covariance directly and as efficiently as possible
from Lnformation encoded in the fitting procedure used in the resonance
search.

* u(x) = (Z(m)) = 0 asymptotically under the background hypothesis

* Once we have X(m, m’), it is computationally cheap to sample the GP
(“generate GP-toys”) and measure with high precision:
* up-crossings
* directly the global p,, especially at low and moderate signficance, but also at
moderately high Z;,.q:

* |t was already worked out for us how to calculate the average up-crossings
at any significance level directly from the covariance in “Random
Vibrations. Analysis of Structural and Mechanical Systems”, Lutes, L.D. and
Sarkani, S., Butterworth Heinemann, Boston (2004).
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A new (!) set of Asimov (background) datasets

¢ Asimov toy
BF toy

8

* Sum the covariances Z;(m, m") resulting from
individual background (bin i) fluctuations.

6~

N, events

/|-

* The standard background-only toy is a series of
independent fluctuations!

* Covariances for independent sources add linearly 1

2 lowp 0 Medif

Events/bin

e There are cases with correlated data - not covered here 00 10 120 130 10 150 160

* Fitted signal amplitude fi(m) must be proportional (a) m

to the amount of «signal». A single fluctuation is a +F
placeholder for all possible fluctuations of the binin ~
qguestion, just like the fit to a standard Asimov
dataset is a placeholder for an ensemble of fits to
random toy datasets.
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Covariances 2(m, m')
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Various paths to the trials factor (and Z;;opq1)
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Various studies and cross-checks

* 3 different statistical models:
1) G&V model based on background template,
2) parametric background inspired by H — yy, and
3) inspired by H — yy with additional scan over width of mass peak

* We (more precisely ©) reproduce the published G&V example results (1)

e 2 different software implementations: python (published results) and
MATLAB (cross-check)

* Effect of poor choice of bin width (affects sensitivity, but no bias)
e 10x larger data sample for G&V model (smaller diff. BF-GP toys)



SigCorr: Python software on gitlab.cern.ch

sampling/fitting
Asimov set of

* A framework to study the trials factor b“kg“““ds\mples ; &
* Several ways to estimate the trials factor Likelibood scen

(see figure) i

ole . o ° Test statistic curves Significance curves

 Utilities that consistently operate on ‘ 7

defined data structures that allow the o——

user to build their own pipeline ]

 See the docs (sigcorr.docs.cern.ch/dev/)
for installation details, usage examples

) Up-crossings / Euler number
and tutorials. / ,

Gaussian process to:fs/

Average

Gross & Vitells / Vitells & Gross

Trials factor upper bound
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Conclusions

We propose to model the covariance of the significance
for bump hunts with fit-scans of special datasets
consisting of Asimov background plus 1-bin-at-a-time
fluctuations.

With 3 quite different toy models of searches we have
excellent agreement between large samples of brute-
force toys and GP-toys (and reproduce the G&V

published result on their toy model).

The G&V approximation for high local significances

based on (Nup) at low s?nificance is still important, but
now we have a GP-based method that gives precise and
accurate results for moderate to low significances as
well as precise and accurate estimates of the up-
crossings at low significance.

We will soon submit a publication showing how to
obtain an estimate of the covariance with only a single
Asmimov fit (and some derivative calculations) with the
same accuracy as our previous, already carbon-friendly,
procedure.
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Backup



Sigma bin j

jun
N

=
o

©

[}

IS

N

Significance scans of 2-D toys

Asimov significance, bin 35

20 40 60 80 100 120 140 160 180

Mass bin i

Special Asimov toy

Spatind 2023

Sigma bin j

Hyy-2D Z for a brute-force toy

20

18

16

14

jun
N

=
o

L L
20 40 60 80 100 120 140 160 180
Mass bin i

Brute-force toy

GP-based LEE calculation

Hyy-2D Z GP-toy 3

Width bin j

80 100 120
Mass bin i

GP toy

17



Covariance for 2-D scan of mass and width

2 x 2-D (mass and width) = 4-D covariance matrix
Unwrapped into 2-D
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Gross & Vitells Trials Factors (LEE)

« Using high-Z approximation of yZ , can show that: f; ~ 1 + \/%NZlocal, where NV is

«effective # of independent search regions»
* Outdated rule-of-thumb is ~OK for Z;,.q1 = 2 — 3, but wrong for large 2!
e Bob Cousins called this «an important discovery»!



Prediction of up-crossings?

e G&V: «The function C(0) [that (Nup (at)) depends on] can
in general be difficult to calculate.»

* The G&YV results are based on the properties of random
Gaussian fields, i.e. Gaussian Processes

Spatind 2023 GP-based LEE calculation
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Analytic prediction of up-crossings?

e Adler (1981) Theorem 4.1.1 states that expectation value of number of up-crossings per unit interval

at level u is
1 [=g'"©@
E(N,) =— / o) ¢ u®/(2k(0))

where k(x,x") = k(x — x"), i.e., a «stationary kernel» (i.e. covariance)

« For exp-squared kernel with correlation length [, k(x) = o2e~*"/21* we have

1
E(N,) = 5 e/

1 _
« E(N,) = e Z%/2 (pasis of G&V extrapolation from low to high 2)



Analytic prediction of up-crossings?

* For mass range Am and constant Gaussian mass resolution ag,,, = [ (*), the predicted
average number of up-crossings at any threshold is

Am  _ 52
[E(nu) — 27T_0'me Z7/2

* (*) Acommentin Frate, Cramner et al., Modeling Smooth Backgrounds and Generic

Localized Signals with Gaussian Processes, arXiv:1709.05681v1 about an additional \/f is
misleading for the significance field.
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https://arxiv.org/abs/1709.05681

Analytic prediction of up-crossings for a,,(m)?

fml E(Ny(m))dm 1 _Z?

- Propose E(N,) = —° = 5.€ ? IE(

) nTol dm

L(m)

* For linear a(m), e.g. «Gibbs kernel» (next page), we have

l(m) = ly + (m—my)(ly —lp)/(my —my)
and find

1
E(n,) = [, — ln(_)



Exponential-squared kernel (3)

Two basic Gaussian Process kernels

e Gaussian signal with constant mass resolution
* The unit «exponential-squared» kernel:

5 20 40 o 60 80
S(m,m, 0y) = e~ (m=m')*/20%
%0 Gibbs kernel (X))

* Example with g, = 5 GeV (8.3 bins) o
 Gaussian signal with mass-dependent resolution a,,,(m): 60
* The unit «Gibbs» kernel: =50
"2 40
Z(m, ml) — 20m(M)om(m') e—(m—m’)z/( cr,zn(m)+0'12n(m’)). S 5
o (m)+az,(m') 0

* Example with linear g,,(m) between 2-10 GeV (2.7-13.3 bins) N

20 40 60 80
Mass bin 1
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Gaussian Process toys prediction of up-crossings?

A Gaussian Process for a set of points x is defined by a mean function u(x) and a
kernel k(x,x"), i.e. a covariance matrix Z(x, x").

Fitting a signal model to an ensemble of background spectra at a particular mass
hypothesis x; should result in mean significance of 0 and standard deviation of 1.

The shape of the signal model must strongly influence the covariance between 2
points X(x, x'), however, is it a good approximation to neglect the influence of
background?

With u(x) = 0 and 2(x, x') in hand we can easily generate huge numbers of MC
experiments for Z(m) from the multivariate Gaussian distribution or «GP-toys»!

* No need to perform zillions of time-consuming fits!
e Reliable results for small Z!



Signal significance (Z)
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Typ ical bum 0 hunt Distribution of q, under the background hypothesis

10”1 | | ¥
: -1M Monte Carlo |
" —1/2 x? :
. — L(0,m,0) : .
At the LHC we often use gy = —21n C@amB) > : —— 9 + first bin

* 0O is avector of nuisance parameters
(background, systematics)

* m s the mass parameter we are scanning
over

* wis the amplitude or «strength» of the signal

Probability

* o is distributed as y# for background and large
enough data samples (asymptotic regime)

* Py is the upper-tail probability po = P(qo = q3%°)

* /qo corresponds to significance of excess, e.g.
qo =16 = Z =4,i.e. 40

* Use MC «toys» beyond asymptotic regime for
P(qo = q3™)
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3 LEE options

1. Outdated rule-of-thumb
fr = Am/oy,

2. Estimate by brute force — fit a number of
background-only pseudo-datasets or «toys»

3. Use an asymptotic approximation («G&V»)
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