Inverse Compton emission from WIMP annihilation in the **Galactic Centre**

in collaboration with Jim Hinton and Brian Reville

JULIA I. DJUVSLAND - UNIVERSITY OF BERGEN

THER STAR

https://doi.org/10.1016/j.dark.2022.101157

What's the signal?

in collaboration with Jim Hinton and Brian Reville

JULIA I. DJUVSLAND - UNIVERSITY OF BERGEN

THER STARS

https://doi.org/10.1016/j.dark.2022.101157

The Galactic Centre

Evidence for Dark Matter

Cosmic Microwave Background

Galaxy Rotation Curves

Gravitational lensing 05/01/23

WIMPs in the Galactic Centre

Weakly Interacting (~O(EW scale)) Massive Particle ($m_{WIMP} \sim O(GeV-TeV)$)

Easy extension of Standard Model – Correct relic density – Within experimental reach

05/01/23

WIMP annihilation in the Galactic Centre

Direct photons

WIMP annihilation in the Galactic Centre

Direct photons

Indirect photons

Indirect Photons from Electron Cooling

Energy loss due to:

• Bremsstrahlung

• Synchrotron emission

 Inverse Compton (IC) scattering on CMB and background light

Indirect Photons from Electron Cooling

Energy loss due to:

• Bremsstrahlung

Synchrotron emission

- Inverse Compton (IC) scattering on CMB and background light
- → How does this look like at the galactic centre?

05/01/23

JULIA I. DJUVSLAND - UNIVERSITY OF BERGEN

PAGE 10

05/01/23

JULIA I. DJUVSLAND - UNIVERSITY OF BERGEN

PAGE 11

JULIA I. DJUVSLAND - UNIVERSITY OF BERGEN

Photon emission from WIMPs

Photon emission from WIMPs

05/01/23

JULIA I. DJUVSLAND - UNIVERSITY OF BERGEN

PAGE 14

JULIA I. DJUVSLAND - UNIVERSITY OF BERGEN

What does this mean for **y**-ray telescopes?

What does this mean for **y**-ray telescopes?

- Signal photons increase when taking IC component into account
 - → IC component should not be neglected as common practise

Summary

Studied the effect of secondary photon emission from WIMP annihilation in the Galactic centre

Indirect photon component of WIMP annihilation should not be neglected.

- \rightarrow Experiments would underestimate their sensitivity to WIMP signal
- \rightarrow If DM signal is observed this component can give additional insight

More information: https://doi.org/10.1016/j.dark.2022.101157

05/01/23

Thank you for your attention!

DM - It's there, but what is it?

Indirect DM searches

Flux of annihilating DM:

The GC DM Distribution

- DM distribution profiles differ mainly in inner few kpc of the Galaxy
- Most popular profiles are rotational symmetric and have no substructure
 - \rightarrow too simplistic?
 - → need to choose one in order to set limits

Einasto profile (used in CTA GC paper) with parameters:

 $r_{Sun} = 8.2 \text{ kpc}$ $\rho_{Sun} = 0.33 \text{ GeV/cm}^3$ $\alpha = 0.17$ $r_{S} = 20 \text{ kpc}$

 $\rho_{\text{Einasto}}(r) = \rho_s \exp\left(-\frac{2}{\alpha}\left[\left(\frac{r}{r_s}\right)^{\alpha} - 1\right]\right)$

GC environment

Magnetic field by Jansson & Farrar:

- large-scale regular fields, striated fields + small-scale random fields
- regular field: disk + extended halo with large, out-ofplane component
- striated component aligned with the regular field

Radiation field model by Popescu et al.:

- self-consistent model of broad-band continuum emission
- derived from modelling maps of all-sky emission in infrared and submillimetre regime

x Iknc

Electron Timescales

Electron Cooling Timescales

JULIA I. DJUVSLAND - UNIVERSITY OF BERGEN

Indirect photon emission and data

 10^{-9}

Thermal relic WIMP, $\tau \overline{\tau}$, r = 100 pc Total photons, 10 GeV WIMP Total photons, 100 GeV WIMP Total photons, 1 TeV WIMP WMAP-Planck haze Fermi-LAT data Extrapolated H.E.S.S. flux

JULIA I. DJUVSLAND - UNIVERSITY OF BERGEN

Inverse Compton emission from WIMPs

Inverse Compton emission from WIMPs

Figure 5: Photon spectrum from WIMP annihilation to W bosons in the GC normalised to the total luminosity of the direct photon component (solid line). The dashed lines show the IC component of the spectrum for a variation of the magnetic field strength and the radiation field of the model. The WIMP mass is set to 1 TeV and the model was evaluated at a distance of 100 pc from the GC and evolved for 10^6 years.

- IC component is significant compared to the direct photon signal
 - \rightarrow signal photons increase when taking IC component into account
- Count rate for Fermi highly increased due to its particular sensitivity

PAGE 30