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Working example for this talk: fitting the spectrum of NGC1275

E\Y
p(E) = ¢q (E_> e E/Ecur 4 poisson noise
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Working example for this talk: fitting the spectrum of NGC1275

E\Y
p(E) = ¢q (E_> e E/Ecur 4 poisson noise
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Working example for this talk: fitting the spectrum of NGC1275

E\Y
p(E) = ¢q (E_> e E/Ecur 4 poisson noise
0
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Working example for this talk: fitting the spectrum of NGC1275

* Parameters of interest:
» Amplitude ¢,

E 14
o(E) = ¢ (E_> e E/Ecur 4 poisson noise
0 » Spectral index y
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We want to use Bayesian inference...

U = parameters of interest (POIs)

Bayes theorem: 0 = POIs with nuisance parameters
( |19) X = observed outcome
pX
p(@|x) = [de p(x|9)p('9) p(19) = Prior (“a priori” assumption)

p(x]|9) = p(x|0) integrated over

uncertainty in nuisance parameters
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We want to use Bayesian inference...

U = parameters of interest (POIs)

Bayes theorem: 0 = POIs with nuisance parameters
( |19) X = observed outcome
pX
p(@|x) = [de p(x|9)p(ﬂ) p(19) = Prior (“a priori” assumption)

p(x|9) = p(x|0) integrated over
uncertainty in nuisance parameters

... but it is often too expensive

» Computing cost explodes with number of nuisance parameters

- Need to make simplifying assumptions

Gert Kluge
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Neural networks can approximate posteriors!
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Neural networks can approximate posteriors!

Black Box

y-ray events from NGC1275
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Neural networks can approximate posteriors!

Black Box

y-ray events from NGC1275
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Neural networks can approximate posteriors!

Black Box

___yrayevents from NGC1275
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A network learns to do approximations by example:
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A network learns to do approximations by example:
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A network learns to do approximations by example:
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A network learns to do approximations by example:
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... but this assumes that we can already calculate the posterior!
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We can “trick” a network to learn the posterior implicitly
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We can “trick” a network to learn the posterior implicitly
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We can “trick” a network to learn the posterior implicitly

T | X
3
ot events from NGC127! I
it ”NIHI‘{'I"‘ ! .
| I |
éwi | | H R H'luH"lE‘l"H Jo ;’""'“ am WGCL
g | 1 Ll it '"'lm 2
wl H g lH | "'\1
; l..
- Il I
e Ri A ’ 11
£
o
Enen)
(po = 10 £en L

Nordic Conference on Particle Physics 2023

Gert Kluge



Gert Kluge

We can “trick” a network to learn the posterior implicitly
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We can “trick” a network to learn the posterior implicitly
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We can “trick” a network to learn the posterior implicitly

True

The observations are
simulated according to
the parameter values
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The parameter
values are chosen

independently from
the simulations
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The network now has an implicit understanding of the posterior
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The network now has an implicit understanding of the posterior
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The network now has an implicit understanding of the posterior
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The network now has an implicit understanding of the posterior

Black Box

___yrayevents from NGC1275
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Conditions for the trick to work:

*  When generating the training set, we have
to draw all of the parameters of interest
from the prior distribution.

e The network’s loss function must be the
binary cross entropy.
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The network now has an implicit understanding of the posterior

Black Box

___yrayevents from NGC1275
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Conditions for the trick to work:

When generating the training set, we have
to draw all of the parameters of interest
from the prior distribution.

The network’s loss function must be the
binary cross entropy.
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Inference with NRE seems to be precise for the spectral fit

* 10000 simulations used in training
*  p(Y9) ~ uniform on log scale

e Live time =50 hr’

10045 * Posterior estimation performed
using SWYFT [1]
>
100-35 ::‘5} &
< 103
B
3 107
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0™ 107  10%35 10%45 102 10°
o [TeV 1 em™2s71] Y E.ut [TeV]
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Inference with NRE seems to be precise for the spectral fit

* 10000 simulations used in training H
*  p(Y9) ~ uniform on log scale
* Live time =50 hr’ | L
10045 * Posterior estimation performed 10045
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NRE seems particularly useful for ALP searches with gamma-telescopes

Expected result assuming ALPs with given
mass m and coupling g (using gammaZALPs):

y-ray events from NGC1275
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—— Expected for m=50 neV, g=0.5 x 10~ Gev™?
—— Expected for m=10 neV, g=3 x 10~ GeV™?
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10!

The expected spectrum can be simulated using
gammapy [2] and gammaALPs [3] (by M. Meyer)
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NRE seems particularly useful for ALP searches with gamma-telescopes

Expected result assuming ALPs with given * Parameters of interest:

mass m and coupling g (using gammaZLPs): » Mass of ALPs, m
» ALP-photon coupling, g
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The expected spectrum can be simulated using
gammapy [2] and gammaALPs [3] (by M. Meyer)
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NRE seems particularly useful for ALP searches with gamma-telescopes

Expected result assuming ALPs with given
mass m and coupling g (using gammaZALPs):

y-ray events from NGC1275

10? 1

lﬂ]-:

Counts

109+

Expected for m=0 neV, g=0 x 10~!! Gev™!
—— Expected for m=50 neV, g=0.5 x 10~ Gev™?
—— Expected for m=10 neV, g=3 x 10~ GeV™?

10! 10? 103 104 10®

E [GeV]

10-1

The expected spectrum can be simulated using
gammapy[2] and gammaALPs [3] (by M. Meyer)

* Parameters of interest:

>
>

Mass of ALPs, m
ALP-photon coupling, g

* Nuisance parameters:

YV VVY

Amplitude

Spectral index

Cut-off energy

Magnetic field configuration
+ 12 more related to
configuration of NGC1275
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Preliminary results indicate the method is suitable for ALP searches

* p(¥9) ~ uniform on log scale
Technical details:
Live time = 50 hr —_—
No CR background >
*  Nouncertaintyin nuisance parameters v
\ Single magneticfield realization "'\c\ QO on
3\\ ~—
o« —
Qe“\ =
N
% iﬁ
3 1071
gu“ {*ﬁt 1071 o
;é ] | ]
- @ I IIIIIIII\» I IIIIIIII? I Illllllb
1 AT AT AL A
10-12 ma [ eV ]
1078 107 1012 10-11 Full limits: [4]
mg [eV] |Gay| [1/GeV]

Gert Kluge Nordic Conference on Particle Physics 2023



Preliminary results indicate the method is suitable for ALP searches

* (Mtrue,Gtrue) = (0,0)
° p(ﬂ) ~ uniform on log scale

Technical details:
. Live time = 50 hr

*  No CR background >
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Neural Ratio Estimation: some resources to get you started

e Original paper (to my knowledge) to introduce
the concept:
https://arxiv.org/abs/1903.04057 Joeri Hermans' Volodimis gy Gilles Louppe

Abstract ratio of posterior densities between consecutive states in the
Markov chain. This allows the posterior to be approximated
numerically, provided that the likelihood p(x | 8) and the
prior p(@) are tractable. We consider the equally common
and more challenging setting. the so-called likelihood-free
setup, in which the likelihood cannot be evaluated in a
reasonable amount of time or has no tractable closed-form
expression. However, drawing samples from the forward
model is possible.

Likelihood-free MCMC with Amortized Approximate Ratio Estimators

Posterior inference with an intractable likelihood
is becoming an increasingly common task in sci-
entific domains which rely on sophisticated com-
puter simulations. Typically, these forward mod-
els do not admit tractable densities forcing prac-

 B. K. Miller, A. Cole, P. Forre, G. Louppe, and C.
Weniger, “Truncated ot et o s e
marglnal neural ratlo eStImatIon”' intractabilitv of the likelihood and the mareinal
https://arxiv.org/abs/2107.01214

Jun 2020

* B. K. Miller, A. Cole, G. Louppe, and C. Weniger, * SWYFT (a package under development that does

“Simulation-efficient NRE and more): https://github.com/undark-
marginal posterior estimation with swyft: stop lab/swyft

wasting your precious time,”
https://arxiv.org/abs/2011.13951
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https://arxiv.org/abs/1903.04057
https://arxiv.org/abs/2107.01214
https://arxiv.org/abs/2011.13951
https://github.com/undark-lab/swyft

One take away
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One take away

If you:
1)  Want to infer parameters
2)  Want to avoid simplifications
3)  Can make many simulations

4) Arenot a die-hard frequentist

Then Neural Ratio Estimation is your friend!
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Derivation of the likelihood ratio trick

When the neural networkis trained, itis actually tryingto minimize a loss function. Different loss functions are possible, but for the likelihood ratio trick to work,
it is necessary that we use the Binary Cross Entropy, which looks like this:

LOSS — z [ y ln d + (1 _ y) ln(l _ d) ] (Summed over all training samples) e y = 1if training sample is from True category, 0 if False.

* d = output from neural network for given sample input

Notice that the loss becomes smaller when the network manages to categorize more samples correctly. In the limit of infinite trainingsamples, the loss
becomes

LOSS — ﬂ [ p(x|Np@)Ind + pE)p@P) In(1 —d) ]dxdﬂ
— -

Probability of appearance of a sample of the True category Probability of appearance of a sample of the False category
(because x is simulated taking 9 as a premise) (because x and ¥ are independent)

We assume that the network manages to optimize the loss function perfectly. If thisis the case, the derivative of the loss with respect to the neural network’s
hyperparameters (weights and biases, which are adjusted duringtraining), which we denote by ¢, is 0. Notice thatin the integrand, onlyd is dependenton ¢.

d
—LOSS =

de

ﬂ pix|9p®)  p(IpW)|ad
d 1—-d |og

The likelihood ratio trick follows from setting the square brackets to zero:

. p(x|¥) _ px|9)
= 1-d p(x)  [dop(x|6)
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Workflow

Workflow:

Define a function that outputs a

simulated observation
(as a function of parameters of interest
and nuisance parameters)

Using gammapy

Simulate enough observations to
train a neural network
(according to a defined prior)

Train a neural network

Scan the parameter space using the
neural network

Using SWYFT [1.2]

Nordic Conference on Particle Physics 2023

The simulations implicitly
contain the information on
the relationship between
parameters and observations
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