Higgs EFT interpretation of the search for $HH \rightarrow b\bar{b}\gamma\gamma$ in the ATLAS detector

Laura Pereira Sánchez

Nordic Particle Physics Conference

Spätind 23

Stockholm University

Higgs EFT interpretation of the Search for $HH \rightarrow b\bar{b}\gamma\gamma$ in the ATLAS detector

ggF HH production

- shape of the Higgs potential $V(H) = \frac{1}{2}m_H^2H^2 + \lambda_3\nu H^3 + \frac{1}{4}\lambda_4\nu H^4 + O(H^5).$
- The leading HH production mode is gluon gluon fusion (ggF): \bullet

- The coupling modifier κ_{λ} controls the strength of the Higgs self coupling with respect to SM: $\kappa_{\lambda} = \lambda_3 / \lambda_3^{SM}$

Laura Pereira Sánchez (SU)

Measuring HH production will gives us access to the triple Higgs coupling (self coupling) λ_3 , which gives information of the

• Destructive interference between the two diagrams results in a very small SM cross section of $\sigma_{ggF}^{HH} = 31.05$ fb at $\sqrt{s} = 13$ TeV.

ggF' HH production

- shape of the Higgs potential $V(H) = \frac{1}{2}m_H^2H^2 + \lambda_3\nu H^3 + \frac{1}{4}\lambda_4\nu H^4 + O(H^5).$
- The leading HH production mode is gluon gluon fusion (ggF): \bullet

- The coupling modifier κ_{λ} controls the strength of the Higgs self coupling with respect to SM: $\kappa_{\lambda} = \lambda_3 / \lambda_3^{SM}$

Laura Pereira Sánchez (SU)

Measuring HH production will gives us access to the triple Higgs coupling (self coupling) λ_3 , which gives information of the

• Destructive interference between the two diagrams results in a very small SM cross section of $\sigma_{ggF}^{HH} = 31.05$ fb at $\sqrt{s} = 13$ TeV.

VBF HH production

- (calculated at N3LO)
- respect to the SM value.

• Given the larger cross section, searches for ggF HH production provide better sensitivity to κ_{λ} but the VBF topology has a unique sensitivity to κ_{2V} .

Laura Pereira Sánchez (SU)

• HH production through VBF is the sub-leading HH production mode with a SM cross section of $\sigma_{VBF}^{HH} = 1.73$ fb at $\sqrt{s} = 13$ TeV

$HH \rightarrow bb\gamma\gamma$ event selection

- The paper (optimised for ggF HH production) has been published in <u>PhysRevD</u>
- Events with 2 isolated photons, 2 b-jets at 70% WP and zero leptons are selected and divided in two regions:
 - High mass region: $m^*_{b\bar{b}\gamma\gamma} > 350 \text{ GeV} \rightarrow \text{sensitive to SM}$
 - Low mass region: $m^*_{b\bar{b}\gamma\gamma} < 350 \text{ GeV} \rightarrow \text{sensitive to BSM}$
- Independent BDTs are trained in each region to separate signal from background.
- Two regions are defined from each BDT resulting in 4 final categories optimised for ggF HH κ_{λ} = 1 and κ_{λ} = 10:

Category	Selection criteria
High mass BDT tight	$m^*_{b\bar{b}\gamma\gamma} \ge 350 \text{ GeV}, \text{BDT score} \in [6]$
High mass BDT loose	$m^*_{h\bar{h}\nu\nu} \ge 350 \text{ GeV}, \text{BDT score} \in [0.15]$
Low mass BDT tight	$m^*_{h\bar{h}\nu\nu} < 350 \text{ GeV}, \text{BDT score} \in [0.15]$
Low mass BDT loose	$m^*_{b\bar{b}\gamma\gamma} < 350 \text{ GeV}, \text{BDT score} \in [0.15]$

Laura Pereira Sánchez (SU)

[0.967, 1]

[0.857, 0.967]

0.966, 1]

0.881, 0.966]

$HH \rightarrow bb\gamma\gamma$ fit

- A likelihood fit to the $m_{\gamma\gamma}$ is performed
- the normalisation is estimated from data through a fit to the $m_{\gamma\gamma}$ side band (120 GeV < $m_{\gamma\gamma}$ > 130 GeV).
- shape and normalisation is obtained from simulation.

Laura Pereira Sánchez (SU)

• The non-resonant background is parametrised as an exponential function where the shape is estimated from simulation while

• The resonant processes are parametrised from a double side crystal ball function in the 120 > $m_{\gamma\gamma}$ < 130 GeV region, where the

 $HH \rightarrow bb\gamma\gamma$ limits

• The analysis is optimised for ggF HH, however VBF HH events are also considered as signal.

Laura Pereira Sánchez (SU)

Kappa framework

Higgs EFT interpretation of the Search for $HH \rightarrow b\bar{b}\gamma\gamma$ in the ATLAS detector

HEFT interpretation

- The Effective Field Theory (EFT) framework can be used as a tool to:

 - 2. Explore Beyond-the-Standard-Model scenarios produced a $E >> E_{LHC}$.

• Where $c_{hhh} = \kappa_{\lambda}$ and $c_{thh} = \kappa_{t}$

• In the SM: $c_{hhh} = c_{thh} = 1$ and $c_{ggh} = c_{tthh} = c_{gghh} = 0$

1. Make a more general measurement of the Higgs self-coupling \rightarrow Natural extension of the kappa framework

BSM exploration through HEFT

- HEFT shape benchmarks can be used to explore <u>BSM scenarios</u> which are uniquely sensitive to HH production.
 - By varying the EFT couplings we are also modifying the shape of m_{hh} .
 - \bullet in HEFT at NLO.

Benchmark model	c_{hhh}	c_{tth}	c_{ggh}	c_{gghh}
\mathbf{SM}	1	1	0	0
BM 1	3.94	0.94	1/2	1/3
BM 2	6.84	0.61	0.0	-1/3
BM 3	2.21	1.05	1/2	1/2
BM 4	2.79	0.61	-1/2	1/6
BM 5	3.95	1.17	1/6	-1/2
BM 6	5.68	0.83	-1/2	1/3
BM 7	-0.10	0.94	1/6	-1/6

Laura Pereira Sánchez (SU)

Theorists have suggested a set of 7 benchmarks that fairly represent the different shapes obtained by the coupling variations

Scans to the HEFT Wilson coefficients

- Limits to $c_{hhh} = \kappa_{\lambda}$ are already set by the standard $HH \rightarrow bb\gamma\gamma$ analysis.
- In HEFT, the Higgs field is a singlet and therefore $c_{ggh} c_{gghh}$ and $c_{thh} c_{tthh}$ are independent:

 - The $c_{thh} = \kappa_t$ and c_{ggh} Wilson coefficients are better constrained by single Higgs analyses.
 - *HH* is uniquely sensitive to the c_{tthh} and c_{gghh} Wilson coefficients.

Laura Pereira Sánchez (SU)

• Alternatively, in SMEFT, the Higgs field is a doublet (SM like) and $c_{ggh} - c_{gghh}$ and $c_{thh} - c_{tthh}$ are dependent.

Signal reweighting and uncertainty

Laura Pereira Sánchez (SU)

• A reweighting of the SM ggF HH signal is used to generate the ggF HEFT signals (arxiv:1806.05162).

• An uncertainty on the selection efficiency is estimated from simulated events at truth level.

Channel	$ b\bar{b}\gamma$	γ	Channel	$ b\bar{b}$	$\gamma\gamma$
Region	LM	HM	Region	LM	HM
BM 1	4.9%	0.4%	c_{gghh}	9.8%	6.2%
BM 2	2.4%	4.2%	c_{tthh}	8.7%	1.6°
BM 3	6.1%	4.7%			
BM 4	5.3%	1.4%			
BM 5	10.8%	2.5%			
BM 6	2.8%	1.3%			
BM 7	0.3%	2.3%			

• The effect on the reweighting on the $m_{\gamma\gamma}$ shape is found to be negligible.

HEFT interpretations results

- The SM VBF *HH* process is treated as background.
- Limits on $\sigma_{ggF}(HH)$ are set at 95% CL on the SM, the 7 shape benchmarks, the c_{tthh} and the c_{gghh} scans.

HEFT interpretation of $bb\gamma\gamma$, $bb\tau\tau$ and their combination

Upper limits at 95% CL on the ggF HH cross-section [fb]										
	$ b\bar{l}$	$\bar{b}\gamma\gamma$	$b\bar{b}\tau$	$\tau^+ \tau^-$		Combination				
Benchmark	Obs.	Exp.	Obs.	Exp.	Obs.	-2σ	-1σ	Exp.	$+1\sigma$	$+2\sigma$
SM	127.7	171.6	130.9	110.1	88.1	47.8	64.2	89.1	126.9	178.8
BM 1	189.3	293.0	195.8	150.5	135.0	69.9	93.8	130.2	186.3	264.7
BM 2	183.2	267.7	203.1	163.7	135.1	72.5	97.4	135.1	193.1	273.8
BM 3	109.8	163.2	82.8	62.9	62.9	30.6	41.0	56.9	82.7	120.8
BM 4	111.2	155.8	94.6	75.4	69.2	35.2	47.2	65.6	93.5	132.0
BM 5	97.8	137.7	78.5	61.6	58.4	29.1	39.1	54.3	78.1	111.9
BM 6	134.4	188.9	126.1	101.8	89.1	46.4	62.3	86.5	123.3	174.0
BM 7	88.9	126.3	65.9	51.2	50.4	24.7	33.2	46.0	65.8	93.3

	$b\bar{b}\gamma\gamma$		$bar{b} au^{-}$	$^{+}\tau^{-}$	Combination	
Wilson coefficient	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.
$c_{gghh} \ c_{tthh}$	$\left \begin{array}{c} [-0.4, 0.5]\\ [-0.3, 0.8] \end{array}\right.$	$[-0.5, 0.7] \\ [-0.4, 0.9]$	$[-0.4, 0.4] \ [-0.3, 0.7]$	$[-0.4, 0.4] \\ [-0.2, 0.6]$	$\left \begin{array}{c} [-0.3, 0.4] \\ [-0.2, 0.6] \end{array}\right.$	$[-0.3, 0.3] \\ [-0.2, 0.6]$

Laura Pereira Sánchez (SU)

Important Swedish contribution from Uppsala and Stockholm University

HEFT interpretation of $bb\gamma\gamma$, $bb\tau\tau$ and their combination

Conclusions

- These results were presented at <u>Moriond 22</u>!
- This is the first public result of *HH* EFTs in ATLAS
- The pub note can be found at ATL-PHYS-PUB-2022-019

ATLAS PUB Note

ATL-PHYS-PUB-2022-019

18th March 2022

HEFT interpretations of Higgs boson pair searches in $b\bar{b}\gamma\gamma$ and $b\bar{b}\tau\tau$ final states and of their combination in ATLAS

The ATLAS Collaboration

17

HH decay modes

considered.

Targeted *HH* decays shown today

	bb	WW	ττ	ZZ	γγ
bb	33%				
WW	25%	4.6%			
ττ	7.4%	2.5%	0.39%		
ZZ	3.1%	1.2%	0.34%	0.076%	
γγ	0.26%	0.10%	0.029%	0.013%	0.0005

Laura Pereira Sánchez (SU)

• Due to the large branching ratio (BR), most searches require at least one $H \rightarrow bb$. Different decay modes of the second Higgs are

- ATLAS and CMS searches with full run 2 data for the following decay modes are presented:
 - *bbbb* has the largest BR but large backgrounds arising from multijet production are challenging.
 - $b\bar{b}WW$, $b\bar{b}ZZ$ and $b\bar{b}\tau\tau$ have smaller BRs and can benefit from using leptons for triggering (hadronic $bb\tau\tau$ searches won't be presented).
 - $bb\gamma\gamma$ has the smallest BR but it's a very sensitive analysis thanks to the clean $m_{\gamma\gamma}$ resolution.
- Other final states without any $H \rightarrow b\bar{b}$ are also included in the combinations with partial run 2 data.

$HH \rightarrow b\bar{b}\gamma\gamma$ table

Tabl even MC prod unde set i inclu by th

e 1: The number of data events observed in the $120 < m_{\gamma\gamma} < 130$ GeV window, the number of <i>HH</i> sign ts expected for $\kappa_{\lambda} = 1$ and for $\kappa_{\lambda} = 10$, and events expected for single Higgs boson production (estimated usin simulation), as well as for continuum background. For the single Higgs boson, "Rest" includes the followin uction modes: VBF, <i>WH</i> , <i>tHq</i> , and <i>tHW</i> . The values are obtained from a fit of the Asimov data set generate r the SM signal-plus-background hypothesis, $\kappa_{\lambda} = 1$. The continuum background component of the Asimov data s obtained from the fit of the data sideband. The uncertainties in <i>HH</i> signals and single Higgs boson background ide the systematic uncertainties discussed in Section ?? . The uncertainty in the continuum background is given as sum in quadrature of the statistical uncertainty from the fit to the data and the spurious-signal uncertainty.									
	High mass BDT tight	High mass BDT loose	Low mass BDT tight	Low mass BDT loose					
Continuum background	$4.9^{+1.1}_{-1.3}$	$9.5^{+1.5}_{-1.7}$	$3.7^{+0.9}_{-1.1}$	$24.9^{+2.3}_{-2.5}$	2				
Single Higgs boson background	$0.67^{+0.29}_{-0.13}$	$1.6^{+0.6}_{-0.2}$	$0.23^{+0.09}_{-0.03}$	$1.40^{+0.33}_{-0.16}$	(
ggF+bbH	$0.26^{+0.28}_{-0.16}$	$0.4^{+0.5}_{-0.2}$	$0.07^{+0.08}_{-0.04}$	$0.27^{+0.27}_{-0.16}$					
$t\bar{t}H$	$0.19^{+0.03}_{-0.03}$	$0.49^{+0.09}_{-0.07}$	$0.107^{+0.022}_{-0.017}$	$0.75^{+0.13}_{-0.11}$					
ZH	$0.142^{+0.035}_{-0.025}$	$0.48^{+0.09}_{-0.07}$	$0.040^{+0.020}_{-0.014}$	$0.27^{+0.06}_{-0.04}$	I				
Rest	$0.074^{+0.032}_{-0.014}$	$0.16^{+0.07}_{-0.03}$	$0.012^{+0.008}_{-0.004}$	$0.111^{+0.030}_{-0.012}$					
SM $HH(\kappa_{\lambda} = 1)$ signal	$0.87^{+0.10}_{-0.18}$	$0.37^{+0.04}_{-0.07}$	$0.049^{+0.006}_{-0.010}$	$0.078^{+0.008}_{-0.015}$					
ggF	$0.86^{+0.10}_{-0.18}$	$0.35^{+0.04}_{-0.07}$	$0.046^{+0.006}_{-0.010}$	$0.072^{+0.008}_{-0.015}$					
VBF	$(12.6^{+1.3}_{-1.2}) \cdot 10^{-3}$	$(16.1^{+1.4}_{-1.2}) \cdot 10^{-3}$	$(3.2^{+0.4}_{-0.4}) \cdot 10^{-3}$	$(6.9^{+0.5}_{-0.6}) \cdot 10^{-3}$					
Alternative $HH(\kappa_{\lambda} = 10)$ signal	$6.5^{+1.0}_{-0.8}$	$3.6^{+0.6}_{-0.4}$	$4.5^{+0.7}_{-0.6}$	$8.5^{+1.3}_{-1.0}$					
Data	2	17	5	14					

Signal reweighting

The σ_{HH} depends only on m_{hh} and can be parameters

some coefficients obtained from a fit and c_i are combinations of the 5 EFT couplings that play a role in HH production.

Laura Pereira Sánchez (SU)

trised as a polynomial
$$Poly(A) = \sum_{i=1}^{N} A_i * c_j$$
, where A_i are

• From arxiv:1806.05162: A_{1-23} coefficients to predict σ_{HH}^{NLO}

$$w_{EFT} = \frac{\sigma(m_{hh})}{\sigma^{SM}(m_{hh})} = \frac{Poly(m_{hh} | c_{hhh}, c_t, c_{tt}, c_{ggh}, c_{gghh})}{Poly(m_{hh} | 1, 1, 0, 0, 0)}$$

 \rightarrow We can re-weight SM to any HEFT BSM point!

Benchmarks

Signal selection efficiency

Acceptance \times Efficiency [%]	HM Loose	LM Loose	HM Tight	LM Tight	Total
${ m SM}$	3.2	0.6	7.7	0.4	11.9
BM 1	1.3	2.9	3.8	1.5	9.5
BM 2	1.8	2.2	4.5	1.2	9.7
BM 3	2.2	1.3	8.3	0.6	12.4
BM 4	2.9	0.7	8.6	0.4	12.6
BM 5	3.1	0.3	9.8	0.1	13.3
BM 6	2.6	1.2	7.0	0.7	11.5
BM 7	3.1	0.3	10.8	0.2	14.4

