

Characterizing the initial conditions of heavy-ion collisions with correlation of mean transverse momentum and anisotropic flow

Emil Gorm Nielsen, Niels Bohr Institute

Nordic Conference on Particle Physics, Jan 3rd - Jan 8th 2023

November 15th -16th emil.gorm.nielsen@cern.ch

THE VELUX FOUNDATIONS VILLUM FONDEN 🚿 VELUX FONDEN

Heavy-ion collisions

The main goal of heavy-ion collisions is to extract information about the quark-gluon plasma (QGP)

Emil Gorm Nielsen (NBI) | Jan 3rd - 8th

$$\tau \sim 10^{15} \text{ fm/}c$$

Spåtind 2023

Heavy-ion collisions

The main goal of heavy-ion collisions is to extract information about the quark-gluon plasma (QGP)

 $\tau = 0 \text{ fm/}c$ $\tau = 1 \text{ fm/}c$ $\tau \sim 10 \text{ fm/}c$

How do we probe the system with information from the final state? Anisotropic flow: v_n

Mean transverse momentum: $[p_T]$

Emil Gorm Nielsen (NBI) | Jan 3rd - 8th

$$\tau \sim 10^{15} \text{ fm/}c$$

Spåtind 2023

Anisotropic flow, v_n , reflect the **initial shape**

$$P(\varphi) = \frac{1}{2\pi} \left[1 + 2\sum_{n=1}^{\infty} v_n \cos n(\varphi - \Psi_n) \right]$$

Flow coefficients

Symmetry plane angle

Emil Gorm Nielsen (NBI) | Jan 3rd - 8th

Spatial anisotropy

Anisotropic flow, v_n , reflect the **initial shape**

$$P(\varphi) = \frac{1}{2\pi} \left[1 + 2\sum_{n=1}^{\infty} v_n \cos n(\varphi - \Psi_n) \right]$$

Flow coefficients Symmetry plane angle

State-of-the art understanding of QGP

Spatial anisotropy Medium response

Mean transverse momentum, $[p_T]$, reflect the initial size

$$[p_{\mathrm{T}}] = \frac{1}{M} \sum_{i}^{M} p_{\mathrm{T},i}$$

Mean transverse momentum, $[p_T]$, reflect the initial size

$$[p_{\mathrm{T}}] = \frac{1}{M} \sum_{i}^{M} p_{\mathrm{T},i}$$

2.00 pPb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 1.4 1.75 $-K^{\pm}$ 1.50 — р (*p*₇) [GeV/c] $\begin{pmatrix} 1.25 \\ \textbf{GeV} \\ 1.00 \\ \widehat{\boldsymbol{L}} \\ 0.75 \end{pmatrix}$ 0.500.6 0.25 Pb+Pb 5.02 TeV 0.4 $0.00 \frac{1}{0} \frac{1}{10} \frac{1}{20} \frac{1}{30} \frac{1}{40} \frac{1}{50} \frac{1}{60} \frac{1}{70} \frac{1}{80} \frac{1}{90} \frac{1}{100}$ 10 20 50 60 30 40 centrality [%] Trajectum

Emil Gorm Nielsen (NBI) | Jan 3rd - 8th

IP-Glasma

4

Current understanding of initial conditions

State-of-the-art models

IP-Glasma initial conditions **B. Schenke et al., PRC 102, 044905 (2020)**

 $T_{\rm R}ENTo$ initial conditions used for Bayesian analyses

J.E. Bernhard et al., Nature Physics, 15, 1113 (2019) G. Nijs et al., PRL 126, 202301 (2021) **JETSCAPE, PRL 126, 242301 (2021)**

Emil Gorm Nielsen (NBI) | Jan 3rd - 8th

Spåtind 2023

Current understanding of initial conditions

State-of-the-art models

IP-Glasma initial conditions **B. Schenke et al., PRC 102, 044905 (2020)**

 $T_{\rm R}ENTo$ initial conditions used for Bayesian analyses

J.E. Bernhard et al., Nature Physics, 15, 1113 (2019) G. Nijs et al., PRL 126, 202301 (2021) **JETSCAPE, PRL 126, 242301 (2021)**

(fm) З -8

Poor knowledge of the initial conditions

→ Large uncertainty in extracted transport properties

Correlation of
$$v_n^2$$
 with $[p_T]$

$$\rho(v_n^2, [p_T]) = \frac{\operatorname{cov}(v_n^2, [p_T])}{\sqrt{\operatorname{var}(p_T)}\sqrt{\operatorname{var}(v_2^2)}}$$

P. Bozek, PRC 93, 044908 (2016)

Initial state = final state Confirmed by TRAJECTUM

Correlation of
$$v_n^2$$
 with $[p_T]$

$$\rho(v_n^2, [p_T]) = \frac{\operatorname{cov}(v_n^2, [p_T])}{\sqrt{\operatorname{var}(p_T)}\sqrt{\operatorname{var}(v_2^2)}}$$

P. Bozek, PRC 93, 044908 (2016)

Initial state = final state Confirmed by TRAJECTUM Confirmed by JETSCAPE

Correlation of
$$v_n^2$$
 with $[p_T]$

$$\rho(v_n^2, [p_T]) = \frac{\operatorname{cov}(v_n^2, [p_T])}{\sqrt{\operatorname{var}(p_T)}\sqrt{\operatorname{var}(v_2^2)}}$$

P. Bozek, PRC 93, 044908 (2016)

Initial state = final state Confirmed by TRAJECTUM Confirmed by JETSCAPE Confirmed by v-USPhydro

Correlation of
$$v_n^2$$
 with $[p_T]$

$$\rho(v_n^2, [p_T]) = \frac{\operatorname{cov}(v_n^2, [p_T])}{\sqrt{\operatorname{var}(p_T)}\sqrt{\operatorname{var}(v_2^2)}}$$

P. Bozek, PRC 93, 044908 (2016)

Initial state = final state Confirmed by TRAJECTUM Confirmed by JETSCAPE Confirmed by v-USPhydro Confirmed by IP-Glasma+MUSIC+UrQMD

Correlation of
$$v_n^2$$
 with $[p_T]$

$$\rho(v_n^2, [p_T]) = \frac{\operatorname{cov}(v_n^2, [p_T])}{\sqrt{\operatorname{var}(p_T)}\sqrt{\operatorname{var}(v_2^2)}}$$

P. Bozek, PRC 93, 044908 (2016)

Initial state = final state Confirmed by TRAJECTUM Confirmed by JETSCAPE Confirmed by v-USPhydro Confirmed by IP-Glasma+MUSIC+UrQMD Agreement between initial state estimations and final state calculations $\rightarrow \rho$ directly reflects information from the initial state!

Emil Gorm Nielsen (NBI) | Jan 3rd - 8th

6

Nuclear deformation

$$\rho(r,\theta,\phi) = \frac{\rho_0}{1 + e^{\left[r - R(\theta,\phi)/a\right]}}$$

Correlations of v_2 and $[p_T]$

 $\rho(v_2^2, [p_T])$ positive with weak centrality dependence

 \rightarrow Correlation of initial eccentricity and size

Correlations of v_2 and $[p_T]$

 $\rho(v_2^2, [p_T])$ positive with weak centrality dependence

 \rightarrow Correlation of initial eccentricity and size

Model comparison

Centrality dependence of $\rho(v_2^2, [p_T])$ captured by IP-Glasma + MUSIC + UrQMD

Models based on Bayesian analysis **fail** to describe the trend of the data

Correlations of v_2 and $[p_T]$

 $\rho(v_2^2, [p_T])$ positive with weak centrality dependence

 \rightarrow Correlation of initial eccentricity and s1ze

Model comparison

Centrality dependence of $\rho(v_2^2, [p_T])$ captured by IP-Glasma + MUSIC + UrQMD

Models based on Bayesian analysis **fail** to describe the trend of the data

What drives the difference between the models?

Correlations of v_3 and $[p_T]$

 $\rho(v_3^2, [p_T])$ positive with modest increase in 50-60% centrality

Weaker correlation of $v_3 - [p_T]$ compared to $v_2 - [p_T]$

Correlations of v_3 and $[p_T]$

 $\rho(v_3^2, [p_T])$ positive with modest increase in 50-60% centrality

Weaker correlation of $v_3 - [p_T]$ compared to $v_2 - [p_T]$

Model comparison

 $\rho(v_3^2, [p_T])$ trend also captured by IP-Glasma + MUSIC + UrQMD

Models based on Bayesian analysis show entirely the wrong sign of the correlation

What drives the difference between the models?

Emil Gorm Nielsen (NBI) | Jan 3rd - 8th

9

The nucleon width, w, has been shown to greatly affect ρ Small width needed to keep $\rho(v_2^2, [p_T])$ positive

Emil Gorm Nielsen (NBI) | Jan 3rd - 8th

10

Spåtind 2023

The nucleon width, w, has been shown to greatly affect ρ Small width needed to keep $\rho(v_2^2, [p_T])$ positive

Emil Gorm Nielsen (NBI) | Jan 3rd - 8th

10

Recent state-of-the-art Bayesian analyses \rightarrow Large nucleon width, w > 0.8 fm

Constrain Bayesian analysis with σ_{AA} measurements \rightarrow Nucleon width of 0.62 fm (IP-Glasma: 0.4 fm) \rightarrow Use ρ measurements for validation of model

Emil Gorm Nielsen (NBI) | Jan 3rd - 8th

åtind 2023

Recent state-of-the-art Bayesian analyses \rightarrow Large nucleon width, w > 0.8 fm

Constrain Bayesian analysis with σ_{AA} measurements \rightarrow Nucleon width of 0.62 fm (IP-Glasma: 0.4 fm) \rightarrow Use ρ measurements for validation of model

<u>The ALICE measurements serve as important</u> constraint on the nucleon spatial profile

Emil Gorm Nielsen (NBI) | Jan 3rd - 8th

åtind 2023

Nuclear deformation in Xe-Xe

 $\rho(v_2^2, [p_T])$ has strong sensitivity to deformation parameter β_2 in central collisions

Insufficient data to distinguish between β_2 values, $\beta_2 = 0.0$ ruled out by low energy experiments

Nuclear deformation in Xe-Xe

Emil Gorm Nielsen (NBI) | Jan 3rd - 8th

60

$\rho(v_3^2, [p_T])$ exhibits no sensitivity to β_2 Fluctuation driven, insensitive to initial geometry

System ratio

Emil Gorm Nielsen (NBI) | Jan 3rd - 8th

Ratio of Xe-Xe to Pb-Pb removes most systematic effects Difference due to nuclear structure Sensitivity to the triaxiality?

Data suggest **triaxial structure** of Xe¹²⁹

Spåtind 2023

Rich phenomenology in lowenergy nuclear physics

Emil Gorm Nielsen (NBI) | Jan 3rd - 8th

Ground-state

masses, radii, e.m. moments, ...

Spåtind 2023

Rich phenomenology in lowenergy nuclear physics

Complementary to heavy-ion physics \rightarrow Pin down the initial state

lifetime, yields, ...

Emil Gorm Nielsen (NBI) | Jan 3rd - 8th

Ground-state

masses, radii, e.m. moments, ... **Excitation spectra** energies, transition probabilities, (B) (C) (A) BEAMPIDE **Exotic structures** clusters, buble, halo, ... $\left(rac{T_A^p+T_B^p}{2} ight)$ $e(x,y) \propto$ hydro p=0 p=-1 Constraints from Constraints from Initial condition 🔶 Heavy ion observables nuclear structure

Rich phenomenology in lowenergy nuclear physics

Complementary to heavy-ion physics \rightarrow Pin down the initial state

Consistent nuclear structure?

Low energy High energy

lifetime, yields, ...

Emil Gorm Nielsen (NBI) | Jan 3rd - 8th

Ground-state

masses, radii, e.m. moments, ... **Excitation spectra** energies, transition probabilities, (B) (C) (A) BEAMPIDE **Exotic structures** clusters, buble, halo, ... $\left(rac{T_A^p+T_B^p}{2} ight)$ $e(x,y) \propto \left(\right)$ hydro p=-1 Constraints from Constraints from Initial condition 🔶 Heavy ion observables nuclear structure

Rich phenomenology in lowenergy nuclear physics

Complementary to heavy-ion physics \rightarrow Pin down the initial state

Consistent nuclear structure?

Low energy

Decay modes lifetime, yields, ...

Large potential for exciting physics in heavy-ion runs of new species Alpha clusters in O-O Neutron skin Ca⁴⁰ and Ca⁴⁸ Nuclear structure with isobar runs

Emil Gorm Nielsen (NBI) | Jan 3rd - 8th

Ground-state

masses, radii, e.m. moments, ... **Excitation spectra** energies, transition probabilities, (B) (C) (A) BEAMPIDE **Exotic structures** clusters, buble, halo, ... $e(x,y) \propto$ hydro p=-1 Constraints from Constraints from Initial condition 🔶 Heavy ion observables nuclear structure

Summary

Measurements of $\rho(v_2^2, [p_T])$ is uniquely sensitive to the initial conditions of the heavy-ion collisions

Crucial constraints on initial state parameters In particular, the nucleon width is important in accurately reproducing the experimental data

New way to study the nuclear structure at LHC energies Sensitive to the quadrupole deformation parameter β_2 and triaxial structure γ *Complement the low-energy nuclear experiments*

Emil Gorm Nielsen (NBI) | Jan 3rd - 8th

Spåtind 2023

Back up

State-of-the-art models

IP-Glasma

- IP-Glasma initial conditions with hydrodynamic evolution (MUSIC) and hadronization (UrQMD)
- IP-Glasma well describes ALICE data with $\eta/s = 0.12$ and temperature dependent ζ/s up to 0.13 at T = 160MeV

Bayesian analysis

- Based on T_R ENTo initial conditions •
- Fit experimental data separately to constrain the initial conditions and extract transport coefficients of QGP

Emil Gorm Nielsen (NBI) | Jan 3rd - 8th

B. Schenke et al., PRC 102, 044905 (2020)

J.E. Bernhard et al., Nature Physics, 15, 1113 (2019)

More from Bayesian analysis

Initial state estimators

Probing the initial state requires *initial state estimators*

Estimating v_n^2

- In hydrodynamics: proportional to **initial eccentricity** $v_n \propto \kappa_n \epsilon_n$
- Hydrodynamic response to initial geometry

Estimating [p_T]

- Inversely related to the size of the system
- Proportional to the **initial energy** of the fluid

G. Giacalone et al., PRC 103, 024909 (2021)

Emil Gorm Nielsen (NBI) | Jan 3rd - 8th

 $\frac{N_{\rm part}}{N_{\rm part}} = \frac{N_{\rm part}}{N_{\rm part}}$

Observable

Correlation of
$$v_n^2$$
 with $[p_T]$

$$\rho(v_n^2, [p_T]) = \frac{\operatorname{cov}(v_n^2, [p_T])}{\sqrt{c_k}\sqrt{\operatorname{var}(v_2^2)}}$$

P. Bozek, PRC 93, 044908 (2016)

Normalization

Dynamical $[p_T]$ -fluctuations Particle weight, w, to correct detector inefficiencies

$$c_{k} = \frac{\sum_{i \neq j} w_{i} w_{j} (p_{\mathrm{T},i} - [p_{\mathrm{T}}]) (p_{\mathrm{T},j} - [p_{\mathrm{T}}])}{\sum_{i \neq j} w_{i} w_{j}}$$

Dynamical v_n -fluctuations

$$\operatorname{var}(v_n^2) = v_n \{2\}^4 - v_n \{4\}^4$$

Emil Gorm Nielsen (NBI) | Jan 3rd - 8th

Three-particle cumulant

Subevents

- Separate v_n and $[p_T]$ by a gap in pseudorapidity
- Removes autocorrelations

Observable

Correlation of
$$v_n^2$$
 with $[p_T]$

$$\rho(v_n^2, [p_T]) = \frac{\operatorname{cov}(v_n^2, [p_T])}{\sqrt{c_k}\sqrt{\operatorname{var}(v_2^2)}}$$

P. Bozek, PRC 93, 044908 (2016)

Normalization

Dynamical $[p_T]$ -fluctuations Particle weight, w, to correct detector inefficiencies

$$c_{k} = \frac{\sum_{i \neq j} w_{i} w_{j} (p_{\mathrm{T},i} - [p_{\mathrm{T}}]) (p_{\mathrm{T},j} - [p_{\mathrm{T}}])}{\sum_{i \neq j} w_{i} w_{j}}$$

Dynamical v_n -fluctuations

$$\operatorname{var}(v_n^2) = v_n \{2\}^4 - v_n \{4\}^4$$

Emil Gorm Nielsen (NBI) | Jan 3rd - 8th

Three-particle cumulant

Subevents

- Separate v_n and $[p_T]$ by a gap in pseudorapidity
- Removes autocorrelations

