Constraints on spin-0 dark matter mediators and invisible Higgs decays

using ATLAS 13 TeV pp collision data with two top quarks and missing energy in the final state

Xuanhong Lou

Nordic Conference on Particle Physics, 06 January 2023

Overview

- Simplified dark matter (DM) models with a spin-0 mediator particle
 - scalar (ϕ) or pseudoscalar (a)
 - Yukawa-type couplings, $g_q = g_{\chi} = 1$
 - three production modes:
 - DM+tt (primary)
 - DM+tW
 - DM+tj
- Invisible Higgs decays
 - special case: ttH (125) production ~ DM+tt, m_{ϕ} = 125 GeV
 - unlike DM, tWH and tjH production not included
 - destructive interference between top- / W-radiated Higgs

	signal	tWHIO	DM+ <i>t</i> W	DM+ <i>t</i> W
a Marco	Signai	IWH LO	$m(\phi, \chi) = (100, 1) \text{ GeV}$	$m(\phi, \chi) = (150, 1) \text{ GeV}$
A COM STORE	cross section [fb]	16.4	60.1	36.2
A HAR KHO	sional		DM+tj	DM+tj
Wn + 54	signai	IJH LO	$m(\phi, \chi) = (100, 1) \text{ GeV}$	$m(\phi, \chi) = (150, 1) \text{ GeV}$
Stockholms	cross section [fb]	60.2	290	141
universitet				

Experimental Signatures

- Common: presence of at least one b-tagged jet and E_T^{miss} / E_T^{miss} significance (S)
- Three analysis channels based on light lepton multiplicity

• tt0L

- consists of tt0L-high and tt0L-low
- tt0L-high: no leptons (e, μ , τ), E_T^{miss} trigger, ≥ 2 b-jets, large *S*, high top mass
- tt0L-low: no leptons (e, μ , τ), E_T^{miss} trigger + b-jet trigger, ≥ 2 b-jets, lower E_T^{miss} / S
- tt1L
 - exactly one lepton (e, μ), E_T^{miss} trigger, ≥ 2 b-jets, large *S*, high top mass
- tt2L
 - exactly two opposite-charge leptons (e, μ), dilepton trigger, \ge 1 b-jets

The tt0L-high Analysis

• <u>Previous publication</u> (stop search)

- SRA, SRB optimised for 2-body decays
- SRC (3-body) and SRD (4-body) not considered for DM interpretation

Variable/SR	SRA-TT	SRA-TW	SRA-T0	SRB-TT	SRB-TW	SRB-T0	
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$						
$E_{\rm T}^{\rm miss}$			> 250) GeV			
N_{ℓ}			exac	tly 0			
N_{j}		≥ 4					
$p_{\mathrm{T},2}$			> 80	GeV			
$p_{\mathrm{T},4}$			> 40	GeV			
$\Delta \phi_{\min} \left(\mathbf{p}_{\mathrm{T},1-4}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} \right)$			>	0.4			
N_b			\geq	2			
$m_{ m T}^{b,{ m min}}$			> 200	GeV			
τ -veto		\checkmark					
$m_1^{R=1.2}$			> 120	GeV			
$m_2^{R=1.2}$	$> 120 { m ~GeV}$	$60120~\mathrm{GeV}$	$< 60 { m ~GeV}$	$> 120~{\rm GeV}$	$60120~\mathrm{GeV}$	$<60~{\rm GeV}$	
$m_1^{R=0.8}$		$> 60~{\rm GeV}$			_		
$j_1^{R=1.2}(b)$		\checkmark			_		
$j_2^{R=1.2}(b)$	✓ –						
$\Delta R\left(b_{1},b_{2}\right)$	> 1.0 - > 1.4						
$m_{\mathrm{T}}^{b,\mathrm{max}}$	– > 200 GeV						
8	> 25 > 14						
m_{T2,χ^2}		$> 450 { m ~GeV}$			$< 450 { m ~GeV}$		

The tt0L-low Analysis

- Newly added for the combination
 - 3 SR bins: SR0X, SRWX and SRTX
 - major backgrounds in SR:
 - tt, tt+b, single-top
 - Z+jets
 - tt+Z
- Main discriminating variables:
 - cosh_{max}
 - reducing backgrounds originating from the semi-leptonic top quark with lost lepton
 - χ_{tt}^2
 - reducing backgrounds with no hadronically decaying top quark pair

The tt0L-low Analysis

- Previous publication
 - Dedicated DM SRs
 - spin-0 mediator mass up to approximately 200 GeV excluded at unitary couplings, assuming $m_{\chi} = 1$ GeV

Selection		DM_scalar DM_pseudoscalar		
Preselection		hard-lepton preselection		
N _{jet} , N _{b-jet}		≥ (4, 2)		
Jet $p_{\rm T}$	[GeV]	> (80, 60, 30, 25)		
b -tagged jet $p_{\rm T}$	[GeV]	> (80, 25)		
$E_{\mathrm{T}}^{\mathrm{miss}}$	[GeV]	> 230		
$H_{\mathrm{T,sig}}^{\mathrm{miss}}$		> 15		
m _T	[GeV]	> 180		
Topness		> 8		
$m_{\rm top}^{\rm reclustered}$	[GeV]	> 150		
$\Delta \phi(\operatorname{jet}_i, \vec{p}_{\mathrm{T}}^{\mathrm{miss}}), i \in [1, 4]$	[rad]	> 0.9		
$\Delta \phi(ec{p}_{\mathrm{T}}^{\mathrm{miss}},\ell)$	[rad]	> 1.1 > 1.5		
Exclusion technique		Based on shape-fit in $\Delta \phi(\vec{p}_{\rm T}^{\rm miss}, \ell)$		
Bin boundaries in $\Delta \phi(\vec{p}_{\rm T}^{\rm miss}, \ell)$		$\{1.1, 1.5, 2.0, 2.5, \pi\}$		

Previous publication

Stockholms

universitet

- Dedicated 2-body SRs with DM interpretation
- scalar (pseudoscalar) mediator mass up to 250 (300) GeV excluded at unitary couplings, assuming $m_{\chi} = 1$ GeV

- Between tt0L-high and tt0L-low
 - orthogonalization requirements on large-radius jet, E_T^{miss} and S in tt0L-low SRs
 - CRZAB-T0 removed from tt0L-high
 - orthogonalization requirements on large-radius jets in tt0L-low Z+jets enriched CRs
- Between tt0L, tt1L and tt2L
 - SR non-overlapping by construction thanks to the requirements on lepton multiplicity
 - orthogonality of CRs checked explicitly using EventNumbers
 - exception: tt+Z CR
 - all analyses adopted a similar strategy and constrained the tt+Z (Z→vv) process using 3lepton tt+Z (Z→II) enriched CRs
 - large overlap
 - in the combination, the most inclusive tt+Z CR across all channels (from tt2L) is used

Statistical Combination

- A profile likelihood fit to
 - tt0L: 3+6 = 9 SR bins
 - tt1L: 4 SR bins
 - tt2L: 6×2 = 12 SR bins
 - ... and all CRs
- Correlation strategy
 - fully correlated:
 - experimental uncertainties
 - signal modelling
 - uncorrelated:
 - background modelling

Full Combination Results: Dark Matter

Full Combination Results: Invisible Higgs Decays

Analysis	Best fit $\mathcal{B}_{H o \mathrm{inv}}$	Observed upper limit	Expected upper limit	Reference
ttOL	$0.48^{+0.27}_{-0.27}$	0.95	$0.52\substack{+0.23 \\ -0.16}$	[28], this document
tt1L	$-0.04^{+0.35}_{-0.29}$	0.74	$0.80\substack{+0.40 \\ -0.26}$	[29], this document
tt2L	$-0.08^{+0.20}_{-0.19}$	0.36	$0.40\substack{+0.18 \\ -0.12}$	[30], this document
$t\bar{t}H$ comb.	$0.08^{+0.15}_{-0.15}$	0.38	$0.30_{-0.09}^{+0.13}$	This document

Conclusion

- A combination of three analyses in $tt+E_T^{miss}$ final state has been presented
 - for scalar (pseudoscalar) mediator DM models, the combination extends the excluded mass range by the best of the individual channels by 50 (25) GeV
 - an upper limit on the Higgs boson invisible branching ratio of 0.38 (0.30) is observed (expected)
- Paper accepted this Tuesday
 - <u>https://inspirehep.net/literature/2180393</u>
 - https://arxiv.org/abs/2211.05426

Backup Materials

The tt0L-low Analysis: SR Selections

S-INERSITA

Variables	SR0X	SRWX	SRTX	
N _{lepton}		= 0		
Orthogonalisation	$E_{\mathrm{T}}^{\mathrm{miss}} < 250~\mathrm{Ge}$	eV or $S < 14$ or $m_{\text{large-radii}}^{R=1.2}$	_{us jet} < 120 GeV	
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]		> 160 < 250, when passing <i>b</i> -jet trigger	s	
S	> 10			
$\Delta \phi_{\min}(\boldsymbol{p}_{\mathrm{T},1-4}, \boldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}})$	> 1.0 > 0.5			
$\Delta R\left(b_{1},b_{2} ight)$	> 1.2			
$N_{ m large-radius\ jet}$	= 0	>	· 0	
m _{large-radius jet} [GeV]	—	(40, 130)	≥ 130	
ΔR_{\min} (large-radius jet, <i>b</i> -tagged jets)	-	_	< 1.2	
cosh _{max}	< 0.5	< 0.6	< 0.7	
$\chi^2_{t\bar{t},\mathrm{had}}$	< 4	< 6	< 8	
$p_{\mathrm{T}}^{tar{t}}/E_{\mathrm{T}}^{\mathrm{miss}}$	(0.7, 1.2)	(0.5	, 1.2)	

The tt0L-low Analysis: Post-fit SR Yields

Process	SR0X	SRWX	SRTX
Observed data	60	74	36
Expected SM events	45 ± 8	59 ± 6	28 ± 5
$t\bar{t}$ (other)	14 ± 4	15 ± 4	9.4 ± 3.5
tī+b	10 ± 7	15.0 ± 3.1	7.2 ± 2.8
Single-top	3.8 ± 3.0	4.3 ± 2.6	1.9 ± 1.5
Z+jets	8.0 ± 1.6	12.1 ± 2.3	3.1 ± 0.8
W+jets	1.6 ± 1.1	2.7 ± 2.1	0.6 ± 0.6
$t\bar{t}+Z$	5.9 ± 1.0	7.8 ± 1.3	5.3 ± 1.1
Diboson	0.28 ± 0.20	0.7 ± 0.4	0.30 ± 0.19
Other	0.55 ± 0.15	0.88 ± 0.24	0.70 ± 0.22
Pre-fit <i>tt</i>	15	17	9.8
Pre-fit $t\bar{t}+b$	7	11.5	5.6
Pre-fit Single-top	7.1	8.2	3.6
Pre-fit Z+jets	6.1	9.2	2.3
Pre-fit $t\bar{t}+Z$	5.9	7.9	5.4
Benchmark signal models			
DM $m(\phi, \chi) = (10, 1)$ GeV	27.4 ± 2.4	33.2 ± 2.2	27.5 ± 2.2
DM $m(a, \chi) = (50, 1)$ GeV	18.8 ± 1.3	22.6 ± 1.5	10.6 ± 1.0
$H \rightarrow \text{inv} \left(\mathcal{B} = 100\%\right)$	10.52 ± 0.34	17.1 ± 0.4	12.1 ± 0.4

The tt0L-low Analysis: Background Estimation

- Main backgrounds normalised in dedicated CRs
 - tt, tt+b, single-top
 - Z+jets
 - tt+Z will be constrained in CR_{ttZ} from tt2L analysis
- Estimation validated in the corresponding VRs
 - no lepton, orthogonal to SRs
 - $\cosh_{max} / \chi_{tt}^2$ sidebands
 - background prediction in VRs agrees with data within 1 σ

	Variables	CR0X	CRWX	CRTX	
	N _{lepton}	= 1			
	E _{T, no lepton} [GeV]		> 160		
	$E_{\rm T}^{\rm miss}$ [GeV]	< 250), when passing <i>b</i> -jet	triggers	
	$S_{no \ lepton}$	> 10			
	$\Delta \phi_{\min}(\boldsymbol{p}_{\text{T,1-4}}, \boldsymbol{p}_{\text{T,no lepton}}^{\text{miss}})$	> 1.0	> 1.0 > 0.5		
Shared selections	$\Delta R\left(b_{1},b_{2}\right)$		> 1.2		
	N _{large-radius jet}	= 0		> 0	
	m _{large-radius jet} [GeV]	—	(40, 130)	≥ 130	
	ΔR_{\min} (large-radius jet, <i>b</i> -tagged jets)	-	_	< 1.2	
	cosh _{max, no lepton}	< 0.9	< 0.95	< 1.0	
	$\chi^2_{t\bar{t}, had}$	< 10	< 20	< 40	
	$p_{\mathrm{T}}^{t\overline{t}}/E_{\mathrm{T, no lepton}}^{\mathrm{miss}}$	(0.7, 1.2)	(0.	5, 1.2)	
$t\bar{t}$ (other) antiched selections	Variables	$CR0X_{t\bar{t}}$	$CRWX_{t\bar{t}}$	CRTX _{tī}	
rr (outer) enriched selections	$\chi^2_{t\bar{t}, \text{lep}}$	$ \begin{array}{c c c c c c c c } & = 1 \\ & & > 160 \\ \hline & < 250, when passing b-jet trip b-jet t$			
	Variables	CR0X _{tī+b}	$CRWX_{t\bar{t}+b}$	$CRTX_{t\bar{t}+b}$	
$t\bar{t}$ +b enriched selections	$\chi^2_{t\bar{t}, \text{ lep}}$	radius jet, b-tagged jets) — shmax, no lepton < 0.9			
	N _{extra b-tagged jet}		≥ 1		
	Variables	CR0X _{single-top}	CRWX _{single-top}	CRTX _{single-top}	
Single-ton enriched selections	$\chi^2_{t\bar{t}, \text{ lep}}$	≥ 30			
single top entitled selections	N _{extra b} -tagged jet	= 0			
	cosh _{max, no lepton}	< 0.5	< 0.6	< 0.7	
				1	
Variables	CR0X _{Z+jets}	CRWX _{Z+jet}	CRWX _{Z+jets} CRTX _{Z+jets}		
N _{lepton}		= 2			
Orthogonalisation	N ^{R=1.2} Nlarge-radius	$_{jet} < 2$ or $m_{subleading}^{R=1.2}$	g large-radius jet < 60 Ge	eV	
E ^{miss} _{T, no lepton} [GeV]		> 160			
S _{no lepton}		> 8			
$\Delta \phi_{\min}(\boldsymbol{p}_{T,1-4}, \boldsymbol{p}_{T}^{\text{miss}})$		> 0.5			

= 0

N_{large-radius jet} m_{large-radius jet} [GeV]

 $m_{\ell\ell}$ [GeV]

 $p_{\mathrm{T}}^{\ell\ell}$ [GeV]

 \mathcal{S}

(40, 130)

(80, 100)

> 160

< 5

> 0

 ≥ 130

The tt0L-low Analysis: VR Selections

- VRs are not included in the statistical model
 - 3 bins for tt+b, single-top and Z+jets
 - 3 bins for tt (other)

Stockholms

universitet

Variables	VR0X _{tī}	$\mathbf{VRWX}_{t\overline{t}}$	VRTX _{tī}	VR0X _{non $t\bar{t}$}	VRWX _{non $t \bar{t}$}	VRTX _{non $t\bar{t}$}
N _{lepton}	= 0				-	
Orthogonalisation		$E_{\rm T}^{\rm miss} < 250$	GeV or $S < 14$	or $m_{\text{large-radius}}^{R=1.2}$	_{jet} < 120 GeV	
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]		> 160 < 250, when passing <i>b</i> -jet triggers				
S		> 10				
$\Delta R\left(b_{1},b_{2} ight)$	> 1.2			> 2.2	> 1.6	> 1.2
N _{large-radius jet}	= 0	>	· 0	= 0 > 0		0
m _{large-radius jet} [GeV]	—	(40, 130)	≥ 130	_	< 130	≥ 130
$\Delta \phi_{\min}(\boldsymbol{p}_{\mathrm{T},1-4}, \boldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}})$	> 1.0	> 0.5		> 0.5		
cosh _{max}	(0.5, 0.9)	(0.6, 0.95)	(0.7, 1.0)	< 0.5	< 0.6	< 0.7
$\chi^2_{t\bar{t}, \text{ had}}$	< 4	< 6	< 8	(4, 999)	(6, 999)	(8, 999)
$p_{\mathrm{T}}^{t ilde{t}}/E_{\mathrm{T}}^{\mathrm{miss}}$	(0.7, 1.2) (0.5, 1.2) —		—			
ΔR_{\min} (large-radius jet, <i>b</i> -tagged jets)	< 1.2			< 1.2		

The tt0L-low Analysis: CR plots

Stockholms universitet

ANERS/A

ttOL Combination Results: Dark Matter

ttOL Combination Results: Invisible Higgs Decays

Analysis	Best fit $\mathcal{B}_{H \to \text{inv}}$	Observed upper limit	Expected upper limit	Reference
tt0L-low	$0.88^{+0.48}_{-0.46}$	1.80	$1.09\substack{+0.50\\-0.26}$	this document
tt0L-high	$0.27\substack{+0.28 \\ -0.27}$	0.80	$0.59\substack{+0.29 \\ -0.18}$	[28], this document
tt0L comb.	$0.48^{+0.27}_{-0.27}$	0.95	$0.52_{-0.16}^{+0.23}$	[28], this document

The tt2L Analysis: Additional SR Plot

Impact of Background Systematics

