Improving Bayesian parameter estimation with the latest RHIC and LHC data including a new initial conditions model

Maxim Virta¹

1. University of Jyvaskyla, Finland

Wednesday 4th January, 2023

Spåtind 2023, Vinstra, Norway

Introduction

The different stages of Heavy-Ion collisions

Introduction

D t			
Parameter	Description		
T_c	Temperature of const. $\eta/s(T)$, $T < T_c$		
$\eta/s(T_c)$	Minimum $\eta/s(T)$		
$(\eta/s)_{\rm slope}$	Slope of $\eta/s(T)$ above T_c		
$(\eta/s)_{\rm curve}$	Curvature of $\eta/s(T)$ above T_c		
$(\zeta/s)_{ m peak}$	Temperature of $\zeta/s(T)$ maximum		
$(\zeta/s)_{ m max}$	Maximum $\zeta/s(T)$		
$(\zeta/s)_{ m width}$	Width of $\zeta/s(T)$ peak		
T_{switch}	Switching / particlization temperature		
N(2.76 TeV)	Overall normalization (2.76 TeV)		
N(5.02 TeV)	Overall normalization (5.02 TeV)		
p	Entropy deposition parameter		
w	Nucleon width		
σ_k	Std. dev. of nucleon multiplicity fluctuations		
d_{\min}^3	Minimum volume per nucleon		
$ au_{ m fs}$	Free-streaming time		

Trento p-value, http://qcd.phy.duke.edu/trento/

BAYESIAN PARAMETER ESTIMATION

Bayes' theorem:

$$P(H|E) = \frac{P(E|H) \cdot P(H)}{P(E)}$$
$$P(E) = \sum_{i=1}^{n} P(E|H_i)P(H_i)$$

- Find optimal set of model parameters that best reproduce the experimental data.
- Utilize constraints, such as flow observables, to help narrow down the $\eta/s(T)$ and such.

Testing a single set of parameters requires $\mathcal{O}(10^4)$ hydro events, and evaluating eight different parameters five times each requires $5^8 \times 10^4 \approx 10^9$ hydro events. That's roughly 10^5 CPU years!

OUR ARSENAL OF OBSERVABLES - STOCHASTIC APPROACH

• Together, various flow observables cover the sensitivity for all components of transport properties.

Name	Symbol	Measure	Sensitivity-stochastic approach
Flow coefficients	v_n	System expansion and anisotropy of the flow	Average $\langle \eta / s \rangle$ and $\zeta / s(T)$ peak
(Normalized) Symmetric cumulants	(N)SC(k, l, m)	Correlation between magnitudes of flow harmonics	$\eta/s(T)$ temperature dependence
Non-linear flow mode coefficients	$\chi_{n,mk}$	Quantification of the non-linear response	$\eta/s(T)$ at the freeze-out
Symmetry-plane correlations	$ ho_{n,mk}$	Correlations between the directions of flow harmonics	$\eta/s(T)$

Thanks to excellent ALICE papers over years:

- Phys.Rev.Lett. 117 (2016) 182301, Phys.Lett. B773 (2017) 68, Phys.Rev. C 97 (2018) 024906, JHEP05 (2020) 085, Phys.Lett. B818 (2021) 136354, Phys.Rev.Lett. 127 (2021) 092302 - flow
- Phys.Rev.Lett. 106 (2011) 032301, Phys.Rev.C 88 (2013) 044910, Phys.Lett. B772 (2017) 567-577, Phys.Rev.C 101, 044907 (2020) - N_{ch} and $\langle p_T \rangle$

Results Jyvaskyla (2022)

Results: Jyvaskyla (2022) – combined collision energy analysis (2.76 + 5.02 TeV)

• Together with two collision energies and added observables, the uncertainty has reduced!

J.E. Parkkila, A. Onnerstad, M. Virta, S.F. Taghavi, C. Mordasini, A. Bilandzic, D.J. Kim, Phys. Lett. B 835 (2022) 137485

INCLUSION OF RHIC DATA

- Included observables for RHIC 200 GeV data: $v_2 v_4$, $\langle p_T \rangle$ and N_{ch} for charged particles and PID
- Fixed nuclen width w = 0.5 and now relaxed [0.67-1.24]
- small improvements for *N*_{ch} and better for *v*_n
- Posterior distributions don't converge

Preliminary

Results Inclusion of RHIC data

 v_n , $[p_T]$ correlation - shortage of $T_{R}ENTo$ model

(1)

Moments of δv_n

Characterizes the fluctuation of different order
 |η| < 0.8 and 0.2 GeV < p_T < 5.0 GeV

Moments of a distribution

Variance: $(X - \mu)^2$, skewness: $(X - \mu)^3$ and kurtosis: $(X - \mu)^4$

Prior distribution of $\rho(v_n^2, [p_T])$

v_n^2 , $[p_T]$ correlation

$$\rho(v_2^2, [p_T]) = \frac{\langle (v_2^2 - \langle v_2^2 \rangle) \left([p_T] - \langle [p_T] \rangle \right) \rangle}{\sqrt{\langle (v_2^2 - \langle v_2^2 \rangle)^2 \rangle \langle ([p_T] - \langle [p_T] \rangle)^2 \rangle}}$$

Clear centrality dependence

• Gains negative values

Observable sensitivities

T_RENTo vs. EKRT: Ongoing

T_RENTo[1]

- Flexibility to produce some other models
- Unable to predict $(\sqrt{s_{NN}} Cent)$ dependence
- Has six free parameters

EKRT [2]

- Only two free parameters, K_{sat} and β_{sat}
- (√S_{NN} Cent) dependence comes automatically from the gluon saturation and mini-jet production
- Computationally a bit heavier → much improved(H. Hirvonen's talk)

J. S. Moreland, J. E. Bernhard, and S. A. Bass, PRC 92 011901(R)
 H. Niemi, K. J. Eskola, and R. Paatelainen, PRC 93 024907

- Low-*p*^{*T*} particles are produced by saturation
- Transverse energy profile is $\frac{dE_T}{d^2r}(p_{sat}, \sqrt{s_{NN}}, A, r, b) = \frac{K_{sat}}{\pi} p_{sat}^3 \Delta y$
- The resulting energy density $e(r, \tau_s(r)) = \frac{dE_T}{dV} = \frac{dE_T}{d^2r} \frac{1}{\tau_s(r)\Delta y} = \frac{K_{sat}}{\pi} p_{sat}^4$
- Variable β describes how are soft particles from 3 → 2 processes included
- *K*_{sat} gives momentum range when saturation is considered to take place

Courtesy of Henry Hirvonen

EKRT PbPb 5.02 TeV results

- Particle distributions relatively well described
- $\langle p_{\rm T} \rangle$ a bit overestimated
- Large overestimation in flow harmonics

Outlook

Experiments

- RHIC data (AuAu collisions) Energy and system size dependence (ongoing)
- LHC pPb and pp data System size dependence
- Use new observables in BA
 - Higher order (n > 5) Symmetric cumulants (Anna)
 - Improved Symmetric Plane Correlation (SPC) : independent from flow magnitude correlations (Maxim)
 - Asymmetric Cumulants (AC) (Cindy)
 - $\rho(v_n, p_{\rm T}) = \langle \delta v_2^2 \, \delta[p_T] \rangle / \sqrt{\langle (\delta v_2^2)^2 \rangle \langle (\delta[p_T])^2 \rangle }$

Theory

- Improving the initial conditions with
 - EKRT (ongoing)
 - IP+Glasma
- Testing hydro limit with small systems?
- Study the substructure

Thank you for your attention!

Acknowledgments:

- CSC for providing the ~24 million CPU hours
- Harri Niemi, Kari Eskola, Jonah E. Bernhard, J. Scott Moreland and Steffen A. Bass for their useful comments

Requirement of $\langle p_{\rm T} \rangle$ event by event

Full equation

$$\rho(v_2^2, [p_T]) = \frac{\langle (v_2^2 - \langle v_2^2 \rangle) ([p_T] - \langle [p_T] \rangle) \rangle}{\sqrt{\langle (v_2^2 - \langle v_2^2 \rangle)^2 \rangle \langle ([p_T] - \langle [p_T] \rangle)^2 \rangle}}$$

With one set of hydro runs?

- Store all particles from hydro → Uses too much space

Use mean values from previous runs!

Backup

- Previous biased scalar product method $\frac{\langle \cos(a_1n_1\Psi_1 + \dots + a_kn_k\Psi_k) \rangle_{SP} = \frac{\langle v_{n_1}^{a_1} \dots v_{n_k}^{a_k} \cos(a_1n_1\Psi_1 + \dots + a_kn_k\Psi_k) \rangle}{\sqrt{\langle v_{n_1}^{2a_1} \rangle \dots \langle v_{n_k}^{2a_k} \rangle}}$
- New Gaussian distribution method

$$egin{aligned} &\langle\cos(a_1n_1\Psi_1+\cdots+a_kn_k\Psi_k)
angle_{GE}\ &=\int d\Theta N_\Theta(\Theta)\cos\Theta\ &lpha\ &\propto\sqrt{rac{\pi}{4}}rac{\langle v_{n_1}^{a_1}\ldots v_{n_k}^{a_k}\cos(a_1n_1\Psi_1+\cdots+a_kn_k\Psi_k)
angle}{\sqrt{\langle v_{n_1}^{2a_1}\ldots v_{n_k}^{2a_k}
angle}} \end{aligned}$$

• Way to probe the non-linear response, e.g. $v_2^2 v_4 e^{i4(\Psi_4 - \Psi_2)} = \omega_2 \omega_4 c_2^2 c_4 e^{i4(\Phi_4 - \Phi_2)} + \omega_{422} \omega_2^2 c_2^2$

The new SPC shows higher dependence on the specific bulk viscosity rather than the specific shear viscosity.