

Radiation hard 3D Pixel sensors for use in ATLAS-ITk at HL-LHC

Characterization of SINTEF 3D sensors

Ø. Bergsagel¹, O. Dorholt³, A. Grigorev³, A. L. Heggelund³, S. Hassan¹, S.
Hellesund¹, S.K. Huiberts¹, A. Kok², O. Koybasi², M. E. Lauritzen¹, T. Poulianitis¹, M.
Povoli², A. L. Read³, O. M. Røhne³, H. Sandaker³, B. Stugu¹, A. Træet¹

Presented by Simon K. Huiberts

University of Bergen
 SINTEF MiNaLaB, Oslo
 University of Oslo

Spåtind 2023 – Nordic Conference on Particle Physics

Upgrade of LHC and ATLAS

- By 2027 the High-Luminosity LHC should be completed
- An extremely challenging environment for the ATLAS tracking system:
 - Withstand large hadron fluences
 - Handle high data rates
- The Inner Detector (ID) will be replaced by a new all-silicon detector (ITk)
- Tasks of the ITk:
 - Trace particle trajectories
 - Measure momentum
 - Measure vertices of short-lived particles
 - Withstand the increased radiation dose
- To fulfil these criteria the innermost layer is planned to consist of 3D pixel sensors

06/01/2023

3D pixel sensor technology

- In 3D sensors (Fig. right) holes are etched vertically into the silicon bulk and filled with p-type and n-type electrodes
- Advantages of 3D pixel sensors:
 - Drift distance reduced > Reduced signal loss due to charge trapping -> High radiation hardness
 - Fast response time
 - Drift distance decoupled from the sensor thickness
 - Low depletion voltage -> High electric fields easily achieved: Low power dissipation

06/01/2023

Efficiency on irradiated SINTEF 3D sensors

- Test beam at DESY 4 GeV electron beam
- D61-2 module (blue line)
 - Irritated to $\Phi = 5 \times 10^{15} n_{eq} \text{cm}^{-2}$
 - 100 µm active thickness
 - Efficiency reached above 97% with $V_{bias} = 40 \text{ V}$
- D62-1 module (orange line)
 - Irritated to $\Phi = 1 \times 10^{16} n_{eq} \text{ cm}^{-2}$
 - 50 µm active thickness
 - Efficiency reached above 96.5% with V_{bias} = 80 V
 - Specifications of HL-HLC reached:
 - Maintaining an efficiency of 96% with a fluence at $10^{16} n_{eq}$ cm⁻²

06/01/2023

SINTEF 3D pre-production series

- SINTEF will be the tendor for 800 sensors for the ITk
- In 2021, SINTEF completed Run-6 production of 3D sensors - > ATLAS pre-production series
- Fabricated 24 wafers each with 24 sensors
 - 6" Si-Si p-type wafer with 150 µm active thickness
- 60 main steps in the fabrication process
- SINTEF reported its results in "Trento" workshop in March 2022
- Yield between 63-75% depending on strictness
 - Better than previous runs
- Before flip-chip and mounting, the sensors needs to be tested

UNIVERSITY OF BERGEN

ATLAS ITk group in Bergen

- At UiB developing a facility to test components for implementation in the ITk
- Quality assurance (QA) on pre-production components
- In future perform Quality control (QC) on production components
- Testing procedures:
 - Electrical characterization on bare 3D sensors – Mechanical probe station
 - Metrology on bare 3D and planar modules – SmartScope
- Colleges in Oslo assembly full modules and ship them to Bergen
 - Test fully assembled 3D modules Complete test setup w/DAQ software
- Next slide show results from electrical testing

06/01/2023

Electrical testing on pre-production SINTEF 3D sensors

- IV (current–voltage curve) on four non-irradiated full sensor samples from SINTEF
- Measured with a mechanical probe station build inside a clean room
- IV showed two sensors with an early breakdown (green and yellow)
- Two sensors with breakdown late breakdown (blue and red)
- Good agreement with results obtained by SINTEF (faded lines)
- Able to successfully test ITk sensor samples with the probe station

06/01/2023

Summary

Background

- High-Luminosity LHC leads to a challenging environment for the ATLAS tracking system
- Use radiation hard 3D pixel sensors at the innermost layer
- UiB building a facility to test planar and 3D sensor components for implementation in the Inner Tracker (ITk)

Results

- Test beam results on 3D silicon sensors from run 4 shows high radiation hardness
- Irritated modules had an efficiency above 96% after Φ = 5- 10 x 10¹⁵ n_{ed}/cm²
- The 6th run of 3D detectors at SINTEF MiNaLab has been completed
 - This will be the final production design for the 3D sensors at ITk
- At Bergen, just started to test sensors from Run 6
 - Preliminary results from electrical testing shows good agreement with measurements done at SINTEF

Thank you for your attention!

Simon Huiberts

UNIVERSITY OF BERGEN

Figure on slide 2: Technical Design Report for the ATLAS Inner Tracker Strip Detector CERN-LHCC-2017-004. ATLAS-TDR-025, April 2017

Figure on slide 3: 3D Silicon Sensors: Design, Large area production and Quality Assurance for Pixel Detector Upgrades at the Large Hadron Collider NIMA-S-12 0028

Figure 7: Hu Guo. A ten thousand frames per second readout MAPS for the EUDET beam telescope, (2009).

Acknowledgment: The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF).

Simon Huiberts

UNIVERSITY OF BERGEN

Efficiency map on non-irradiated SINTEF 3D sensor

- Efficiency map from test beam at CERN
- Measured in 180 GeV pion test beam:
 - Pointing resolution of 5 µm
- D59-1 module
 - Non-irradiated sensor
 - 100 µm active thickness
 - 50 µm x 50 µm pixel size
- Plot shows an efficiency map averaged over 2x2 pixels
- Overall efficiency was 98.6% at $V_{bias} = 10 V$
- Inefficient regions visible due to the p+ electrodes
- Consisted with the pointing resolution of the reconstructed track

06/01/2023

PAGE 11

Recent history of 3D technology at SINTEF

YEAR	Project	Wafer type	Active thickness [μm]	Electrode diameter [µm]	Remarks
2006	Run-1	4" SOI	230	15	N-type, low mechanical yield
2008	Run-2	4" SOI	230	15	50% yield (roughly)
2010	Run-3	4" SOI	230	15	Low yield (2 out of 24 wafer ok)
2018	Run-4*	6" Si-Si	50 & 100	4	Very good yield (FE-I4 layout)
2019	Run-5*	6" Si-Si	150	6	OK yield (RD53 A/B with active edge)
2021	Run-6*	6" Si-Si	150	6	Completed Feb. 2021. ATLAS pre-production. (RD53 A/B with common layout with FBK, slim-edge termination)

*funded by Norwegian ATLAS R&D

Marco Povoli at "Trento" Workshop on Advanced Silicon Radiation Detectors

Selection criteria for yield calculation

 $\mathbf{\mathbf{A}} \mathbf{P} \mathbf{O}$

Specifications given in the tender:

- $C_{pix} < 100 pF$ (from C-V of 3D diode) \checkmark
- $V_{depl} < 10V$ (from C-V of 3D diode) \checkmark
- $V_{BD} > V_{depl} + 20V \checkmark$
- SLOPE: $rac{I_{LK}(V_{depl}+10V)}{I_{LK}(V_{depl}+5V)} < 2$ \checkmark
- $I_{LK}(20^{\circ}C) < 2.5 \mu A/cm^2$

Marco Povoli at "Trento" Workshop on Advanced Silicon Radiation Detectors

				TIER1	TIER2	TIER3	TIER4	TIER4	TIER4+3	TIER4+3+2
WAFER #	Thickness [µm]	SENSOR TYPE	# of sensors	BAD	MARGINAL	GOOD	BEST	YIELD STRICT	YIELD SOFT	YIELD VERY SOFT
G17	150 + 500	RD53B	24	1	0	2	21	87.50 %	95.83 %	95.83 %
G15	150 + 500	RD53B	24	3	0	1	20	83.33 %	87.50 %	87.50 %
G11	150 + 500	RD53B	24	4	0	1	19	79.17 %	83.33 %	83.33 %
G14	150 + 500	RD53B	24	3	1	1	19	79.17 %	83.33 %	87.50 %
G7	150 + 500	RD53B	24	3	0	3	18	75.00 %	87.50 %	87.50 %
G18	150 + 500	RD53B	24	3	0	3	18	75.00 %	87.50 %	87.50 %
G1	150 + 500	RD53B	24	2	1	4	17	70.83 %	87.50 %	91.67 %
G12	150 + 500	RD53B	24	6	0	1	17	70.83 %	75.00 %	75.00 %
G16	150 + 500	RD53B	24	4	2	1	17	70.83 %	75.00 %	83.33 %
G20	150 + 500	RD53B	24	6	1	0	17	70.83 %	70.83 %	75.00 %
G21	150 + 500	RD53B	24	3	0	4	17	70.83 %	87.50 %	87.50 %
T2-2	150 + 500	RD53B	24	6	0	1	17	70.83 %	75.00 %	75.00 %
G5	150 + 500	RD53B	24	7	0	1	16	66.67 %	70.83 %	70.83 %
G19	150 + 500	RD53B	24	6	0	2	16	66.67 %	75.00 %	75.00 %
G22	150 + 500	RD53B	24	8	0	0	16	66.67 %	66.67 %	66.67 %
G2	150 + 500	RD53B	24	5	2	2	15	62.50 %	70.83 %	79.17 %
G24	150 + 500	RD53B	24	9	0	0	15	62.50 %	62.50 %	62.50 %
G4	150 + 500	RD53B	24	3	1	6	14	58.33 %	83.33 %	87.50 %
T2-1	150 + 400	RD53B	24	6	1	3	14	58.33 %	70.83 %	75.00 %
G3	150 + 500	RD53B	24	6	0	5	13	54.17 %	75.00 %	75.00 %
G6	150 + 500	RD53B	24	7	1	3	13	54.17 %	66.67 %	70.83 %
G8	150 + 500	RD53B	24	7	2	3	12	50.00 %	62.50 %	70.83 %
G9	150 + 500	RD53B	24	7	2	3	12	50.00 %	62.50 %	70.83 %
G13	150 + 500	RD53B	24	10	0	2	12	50.00 %	58.33 %	58.33 %
G10	150 + 500	RD53B	24	9	0	4	11	45.83 %	62.50 %	62.50 %
G23	150 + 500	RD53B	24	21	3	0	0	0.00 %	0.00 %	12.50 %

72.44 %

75.16 %

RD53A chip

- Designed by the RD53 collaboration:
 - 20 institutions with the support of both ATLAS and CMS experiments
- Prototype ASIC developed for testing purposes
- Front end with three per-amplifier designs:
 - Synchronous
 - Linear
 - Differential
- Results shown are on the Differential Front-end

IT on G13-B4 full sensor die

- ID: V9-1-000613-1-008
- 48 hours IT
 - Logging humidity and temperature
- Variations well within specification
 - Specifications 25%
 - Observed fluctuations at 6 %
- Zoomed in on Y-axis
 - IT follows the temperature
 - Rises the first ~ 13 hours
 - Small oscillations

03/01/2023

Simon Huiberts

BACKUP

IV on G10-F6 40x40 test structures

- V9-1-00610-9-(110-139): 9 in total
- Leakage current at ~ 4-5 μ A/cm² at 25 V
- Depletion at 5 V
- Breakdown at 55 59 V (well above specification at 25 V)

- Intersect at ~ 40 V
- Data indicates some geographical dependent characteristics of the IV
- Ongoing study

Wafer layout

UNIVERSITY OF BERGEN