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ML use case: Event classification
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The ATLAS collaboration., Aad, G., Abbott, B. et al. Evidence for the Higgs-boson Yukawa coupling
to tau leptons with the ATLAS detector. J. High Energ. Phys. 2015, 117 (2015).




ML use case: Event classification

Since the transformation
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is (highly) non-trivial, verification is typically not straight-forward




Terms

* Interpretability:
Passive characteristic of a model — to what extent it is
understandable by humans

e Explainability:
Active characteristic, involving methods that clarify a
model’s decision process or internal function

* Robustness:
To what extent a model’s prediction is affected by
perturbations in the input data
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Explainability approaches

Assume we have an ML model f with a bunch of parameters 8, taking in data x and
returning predictions y:

y=/(x0)
Three options for explaining y:
* Replace | by an interpretable model: Surrogate model explanations
* Vary x and observe the effect: Extrinsic explanations

e Study @ (for some given x): Intrinsic explanations



Theoretical foundation

Extrinsic explanations

Model agnostic — study y for different x

— Feature importance explanation
(either on average or for single events)

Computational effort

e Randomise feature values
https://arxiv.org/abs/1801.01489
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. SHAP i
https://arxiv.org/abs/1705.07874

Assumptions

* Shapley values
https://arxiv.org/abs/1705.07874

Shapley decomposition
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Intrinsic explanations

* Model-specific — requires all model
parameters

* Use gradients to quantify how a change in
input would change the prediction (per
event)

e Can be combined with randomisation of
feature values

https://Irpserver.hhi.fraunhofer.de/image-classification




Robustness

* Again using our ML model f and a test data point x, how robust
is the prediction y to a perturbation x’ in the input?
l.e. s

y=f(x) equalto y' =f(x+x)?
* Types of perturbations:
e Random noise (E(x') =0)
e Distribution shifts (E(x") # 0)

 Adversarial ( x’ selected so thaty # y')




Robustness under distribution shifts

e Under distribution shifts, feature correlations
remain but numerical values are consistently shifted

* ML methods typically not happy about this

* Mitigated by domain adaptation

* Methods applicable to analysis re-interpretation
https.//arxiv.org/abs/2207.09293




Robustness under random noise

e Can be improved through data augmentation
(randomly sampling x" during training)

* Requires augmentation to be realistic

« Common measures of robustness rely on the same
sampling, at different noise levels

e Estimate is only as good as the sampled values

* Sampling from the marginal distribution leads to unlikely
data points if features are correlated

* Realistic sampling gives
* Data augmentation
* Feature relevance estimate
* Robustness estimate (at statistical level)
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Robustness to adversarial examples

X

C : : : : = «panda»
 Prediction accuracy will vary in different regions of yoop

feature space

» Adversarial attacks exploit this to find and insert the
smallest x' that will change the prediction ,

* \Won’t see this in HEP data, but method is useful for
identifying regions of low robustness

x + 0.007 X x’
y = «gibbon»



Our projects

* Realistic data augmentation for improved robustness

Framework for
e Data augmentation (improves also generalisation)

» Adversarial testing (model diagnostics and verification)

* Mostly NN specific

* Develop suitable robustness score for HEP ML
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