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ML use case: Event classification
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The ATLAS collaboration., Aad, G., Abbott, B. et al. Evidence for the Higgs-boson Yukawa coupling 
to tau leptons with the ATLAS detector. J. High Energ. Phys. 2015, 117 (2015). 
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ML use case: Event classification

Since the transformation

is (highly) non-trivial, verification is typically not straight-forward
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Terms 

• Interpretability:
Passive characteristic of a model – to what extent it is 
understandable by humans

• Explainability: 
Active characteristic, involving methods that clarify a 
model’s decision process or internal function 

• Robustness: 
To what extent a model’s prediction is affected by 
perturbations in the input data
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Explainability approaches

Assume we have an ML model 𝑓 with a bunch of parameters 𝜃, taking in data 𝒙 and 
returning predictions 𝑦:

𝑦 = 𝑓(𝒙, 𝜃)

Three options for explaining 𝑦:

• Replace 𝑓 by an interpretable model: Surrogate model explanations

• Vary 𝒙 and observe the effect: Extrinsic explanations

• Study 𝜃 (for some given 𝒙): Intrinsic explanations
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Extrinsic explanations

Model agnostic – study 𝑦 for different 𝒙

→  Feature importance explanation 
(either on average or for single events)

• Randomise feature values 
https://arxiv.org/abs/1801.01489 

• SHAP 
https://arxiv.org/abs/1705.07874

• Shapley values 
https://arxiv.org/abs/1705.07874

https://arxiv.org/pdf/2108.03125.pdf
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Intrinsic explanations

• Model-specific – requires all model 
parameters 

• Use gradients to quantify how a change in 
input would change the prediction (per 
event)

• Can be combined with randomisation of 
feature values 
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Robustness

• Again using our ML model 𝑓 and a test data point 𝒙, how robust 
is the prediction 𝑦 to a perturbation 𝒙′ in the input? 
i.e. is 

𝑦 = 𝑓(𝒙) equal to 𝑦′ = 𝑓(𝒙 + 𝒙′)?

• Types of perturbations:

• Random noise ( Ε 𝑥′ = 0 ) 

• Distribution shifts ( Ε 𝑥′ ≠ 0 )

• Adversarial ( 𝒙′ selected so that 𝑦 ≠ 𝑦′)
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Robustness under distribution shifts 

• Under distribution shifts, feature correlations 
remain but numerical values are consistently shifted

• ML methods typically not happy about this 

• Mitigated by domain adaptation

• Methods applicable to analysis re-interpretation 
https://arxiv.org/abs/2207.09293
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Robustness under random noise

• Can be improved through data augmentation 
(randomly sampling 𝒙′ during training)

• Requires augmentation to be realistic

• Common measures of robustness rely on the same 
sampling, at different noise levels 

• Estimate is only as good as the sampled values

• Sampling from the marginal distribution leads to unlikely 
data points if features are correlated 

• Realistic sampling gives 
• Data augmentation ✅
• Feature relevance estimate ✅
• Robustness estimate (at statistical level) ✅
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Robustness to adversarial examples

• Prediction accuracy will vary in different regions of 
feature space

• Adversarial attacks exploit this to find and insert the 
smallest 𝑥′ that will change the prediction 

• Won’t see this in HEP data, but method is useful for 
identifying regions of low robustness 

𝒙
y = «panda»

𝒙′

𝒙 + 0.007 × 𝒙′
y = «gibbon»
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Our projects

• Realistic data augmentation for improved robustness

Framework for 

• Data augmentation (improves also generalisation)

• Adversarial testing (model diagnostics and verification)

• Mostly NN specific

• Develop suitable robustness score for HEP ML
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