Search for beyond Standard Model Higgs resonances with a parametrised neural network

Laura Pereira Sánchez

Nordic Conference on Particle Physics

Spåtind 2023

Stockholm University

Introduction

- The SM predicts the existence of the Higgs field (ϕ) and its potential $V(\phi)$
 - In the early Universe V(ϕ) had a minimum at $\phi = 0$ and all particles were massless • A few pico seconds after the Big Bang a **phase transition** to a new ground state $\phi \neq 0$ occurred and many particles
 - acquired mass
 - The SM **Higgs boson** (H) is a result of this spontaneous symmetry breaking (SSB)
- An alternative potential The shape of the potential has a big impact on the physics of the Universe! Standard Model • In the SM the phase transition is smooth and $V(H) = \frac{1}{2}m_H^2H^2 + O(H^3)$ potential • A first order phase transition could explain the matter-anti-matter V (φ) asymmetry in the Universe Higgs field value in our Universe cosmology's inflaton could be some sort of extra Higgs boson! Current experimental knowledge Nature φ

- Furthermore, the Higgs field could naturally connect to dark matter and

Targeted signals

- Several **BSM** models predict the existence of additional scalars with different masses and cross sections
- We search for a heavy scalar X decaying into a lighter scalar S and the SM Higgs H where S $\rightarrow b\bar{b}$ and H $\rightarrow \gamma\gamma$
- In order to keep the search as model-agnostic as possible: ullet
 - A wide range of m_X, m_S signals are targeted: $30 \le m_S \le 500$ GeV and 170 GeV $\le m_S \le 1$ TeV
 - The production cross section is always assumed to be of 1 fb
 - SM decays are assumed for both H and S

How to target all this points?

We want to use a Neural Network (NN) to discriminate signal from background, but how to train our network?

- A. Target groups of similar signals
 - Train a NN with multiple signals
- B. Target each signal individually:
 - Train an individual NN for each signal
 - Train a NN parametrised on m_X , m_S (PNN)

 \rightarrow All these options have been tested/considered!

m_x [GeV]

What is a PNN?

- Issue: Some or all of the components of θ may not be meaningful for a particular target class (i.e. m_X, m_S for background)
- Solution: randomly assign values to those components of θ according to the same distribution used for the signal class

- Typical networks take a vector of features \bar{x} and after training \bullet the network gives $f(\bar{x})$
- If the task is part of a larger context, described by one or more \bullet parameters $\bar{\theta}$, one can use both as input to obtain $f(\bar{x}, \bar{\theta})$ yielding different output values for different choices of θ

Event selection

Selection	Signal Region (SF	(۶
Number of 'tight' and isolated photons		\geq
Number of leptons		=
Number of central jets		$\in [2]$
Number of b-tagged jets @ 70% WP		\geq
Number of b-tagged jets @ 77% WP		=
$m_{\gamma\gamma}~[{ m GeV}]$	$\in [120, 130]$	e

The $m_{\gamma\gamma}$ distribution is used to divide events in a SR ($m_{\gamma\gamma} \sim m_H$) and a Control Region or SB ($m_{\gamma\gamma} \sim m_H$)

 \rightarrow The SB allows us to:

- Correct the normalisation of the large non-resonant background ($\gamma\gamma$ +jets) from data
- Carefully study the full data-to-simulation comparison for the variables of interest

 \rightarrow The SR gives a much better sensitivity to all of the targeted signals since in all of them $H \rightarrow \gamma \gamma$

Laura Pereira Sánchez

6

Predicted number of events

ATLAS work in progress

	Preselection	Side-band
HH	1.615 ± 0.004	0.026 ± 0.001
VBFH	0.68 ± 0.012	0.014 ± 0.002
W^-H	0.084 ± 0.002	0.002 ± 0.0
W^+H	0.122 ± 0.003	0.003 ± 0.001
ZH	2.796 ± 0.01	0.057 ± 0.001
bbH	0.615 ± 0.023	0.016 ± 0.004
ggH	5.41 ± 0.065	0.108 ± 0.009
ggZH	0.865 ± 0.007	0.016 ± 0.001
tHjb	0.962 ± 0.029	0.021 ± 0.004
tWH	0.13 ± 0.005	0.003 ± 0.001
ttH	8.247 ± 0.014	0.204 ± 0.002
$t\bar{t}\gamma\gamma$ all-had	12.804 ± 0.045	10.253 ± 0.04
$t\bar{t}\gamma\gamma$ no-allhad	15.304 ± 0.097	12.22 ± 0.086
$\gamma\gamma$ +jets	1388.15 ± 4.489	1109.74 ± 4.014
Total SM	1437.783 ± 4.491	1132.684 ± 4.015
Data	-	1482
$NF_{\gamma\gamma+jets}$	-	1.31
$m_{X,S} = (1000, 300)$	31.034 ± 0.216	0.87 ± 0.036
$m_{X,S} = (190, 50)$	1.211 ± 0.042	0.059 ± 0.009
$m_{X,S} = (250, 110)$	9.721 ± 0.119	0.461 ± 0.026
$m_{X,S} = (300, 110)$	11.079 ± 0.127	0.494 ± 0.027
$m_{X,S} = (600, 170)$	23.446 ± 0.187	0.738 ± 0.033
$m_{X,S} = (750, 300)$	28.018 ± 0.205	0.843 ± 0.036

Laura Pereira Sánchez

SR
1.589 ± 0.004
0.666 ± 0.011
0.082 ± 0.002
0.119 ± 0.003
2.739 ± 0.01
0.598 ± 0.023
5.302 ± 0.064
0.85 ± 0.007
0.94 ± 0.028
0.127 ± 0.005
8.043 ± 0.014
2.551 ± 0.02
3.084 ± 0.043
$2/0.419 \pm 2.01$ 205.108 ± 2.012
505.108 ± 2.012
$\frac{-}{30,164+0,213}$
1.152 ± 0.041
9.261 ± 0.041
10.585 ± 0.124
22.708 ± 0.124
27.174 ± 0.202

Events / 1.0 GeV

The largest non-resonant and resonant backgrounds are $\gamma\gamma$ +jets, *ttH*, *ggH* and *ZH*

High mass signals have a much larger selection efficiency than low mass

 $m_{\gamma\gamma}$

7

Set splitting

- ullet
 - <u>Train set</u>: used for training lacksquare
 - Validation set: used for assessing the performance on unseen data \bullet
 - <u>Test set</u>: used to test the final performance in a completely unbiased data lacksquare
- Cross validation (CV) is used to recover all of the events which will be needed for the statistical analysis

Laura Pereira Sánchez

The amount of available labeled data is limited so we need to split it properly to assess the performance of our network!

Input variables

- The natural choice of input variables for a PNN with $\theta = m_X, m_S$ are $m_{\gamma\gamma b\bar{b}} \sim m_X$ and $m_{b\bar{b}} \sim m_S$
- used instead of $m_{\gamma\gamma b\bar{b}}$

think this is due to our limited amount of data and training time

Laura Pereira Sánchez

• To avoid correlations with $m_{\gamma\gamma}$, which is used to define the SR and SB, the modified $m^*_{\gamma\gamma b\bar{b}} = m_{\gamma\gamma b\bar{b}} - (m_{\gamma\gamma} - 125 \text{ GeV})$ is

• Less is more: We tested including other variables to the trainings but they seem to confuse the PNN more than help it - we

Hyperparameter optimisation

Parameters are optimised by Keras tuner (maximises the Area-Under-the-Curve of the validation set)

Parameter	Range	Sampling Mode
Number of hidden layers	[1-6]	1
Dropout rate (per-layer)	[0, 0.2]	0.05
Learning rate	[0.0001 - 0.1]	Log

The dataset is very unbalanced - the number of background events is much larger than the number of signal events - the following parameters are defined to help a NN or PNN learn to separate signal from background:

• Class weight: weight(*i*) =
$$\frac{\# \text{ total events}}{2 \cdot \# i \text{ events}}$$
 for *i* = signal of *i* = signal of

 \bullet fluctuations in the number of signal events)

Laura Pereira Sánchez

or background

Batch size: Minimum size such that there are ~ 200 events of each signal (avoids confusing the network due to statistical

PNN architecture

Chosen hyper-parameters

			$n^{[0]} = 4$
Number of hidden layers	4		^r h
Layer 1 dropout rate	0.05	*	
Layer 2 droport rate	0.1	$m^{**}_{\gamma\gamma b\overline{b}}$	
Layer 3 dropout rate	0.2		\sim
Layer 4 dropout rate	0.1		
Learning rate	0.009137	$m_{b\bar{b}}$	
Optimizer	Adam		\sim W
Loss function	Binary Loss	100	A
Initial bias	0.118	m_X	
Signal class weight	0.945		
Background class weight	1.062	$m_{\rm S}$	
Batch size	212613	5	
Number of batches	2		
Number of epochs	2000		

input layer

Laura Pereira Sánchez

4 hidden layers

output layer

Activation functions: ReLu for all hidden layers and a sigmoid for output layer

PNN output

- The PNN score fit is capable of discriminating the targeted θ (m_X, m_S) signal from background ullet
- in $P(\text{signal}) \sim 0.5$

Laura Pereira Sánchez

• Signals with m_X, m_S values far away from θ are easily classified as background ($P(\text{signal}) = 0 = \text{while signals with } m_X, m_S \sim \theta$ result

PNN performance

AUC for train and validation sets

Independent of the (m_X, m_S) parameters

• Very similar AUC(m_X, m_S) values are obtained for the train and validation sets indicating that there is no overtraining

Laura Pereira Sánchez

Validation set AUC (m_X, m_S)

Let's take a closer look!

- The PNN is better at separating better signals with high m_X than with low
- Would a NN do better?

NN vs PNN?

- NNs have been trained with the same input variables as the PNN for 3 specific signals.
- The hyper-parameter optimisation is performed in order to find the best architecture for each case.

AUC	PNN val (train-set)	NN val (train-set)	
X170_S130	0.76 (0.74)	0.83 (0.82)	\rightarrow The NN performs 9% better than the PNN
X250_S100	0.96 (0.96)	0.95 (0.95)	
X750_S110	0.99 (0.99)	0.99 (0.99)	\rightarrow Similar performance

- The NNs also perform worst at low $m_X \rightarrow$ This signal is simply harder to separate from background
- The PNN performs better than the NN at intermediate m_X values \rightarrow The PNN can learn from other masses improving the performance with respect to the NN

Conclusions

- background
- Given the difficulty of the task, the network performs better when the bare minimum amount of variables are given \rightarrow LESS is MORE
- - The NN is only 9% better than the PNN for the signal which is the most difficult to separate from background
 - Training a single NN to target multiple signals (not shown today) gives the worst performance

• A single NN parametrised as a function of 2 resonant masses (m_X, m_S) can be used to separate multiple resonant signals from

• The PNN performs equal to or better than an individual NN trained with the same input variables for most (m_X, m_S) values

Training with MC event weights - Yay or Nay?

The NNs shown today do not use MC events weights because

- Not including event weights speeds the training of the NN considerably
- The network learns better when not using event-weights (improvement in performance)

My suggestion \rightarrow Consider using class weights instead!

Activation functions

- Each neural network neuron has an activation function.
- Different functions are often used in different layers \bullet
- These functions are used to transform

•
$$Z^{[k]} = w_k^{[k]} \cdot a^{[k-1]} + b^{[k]}$$

- ReLu activation functions are most commonly used in the hidden layers.
- Sigmoid/tanh activation functions are often used in the output layers because they predict values $\in [0,1]$ ([-1,1]). They also tend to slow down the training when used in hidden layers of deep networks.

Data/MC in SB

Is there overtraining for any (m_X, m_S) ?

• Train AUC / Val AUC is always very close to 1 so it doesn't suggest any overtraining

Comparing NN architectures

PNN

NN X170_S30

Laura Pereira Sánchez

NN X250_S100

	input_1			input:	[(None, 2)]		
	Inpu	ıtL	ayer	ayer ou		[(None, 2)]	
					V			
	d	ens	se		input:		(None, 2)	
	Dens	e	relu	ι	output:		(None, 29)	
					¥			
	dr	opo	out	in	put:	(N	one, 29)	
	Dr	op	out	ou	tput:	(N	(one, 29)	
_					¥			
	de	nse	ə_1		input	:	(None, 29)	
	Dens	e	relu	ι	output	::	(None, 65)	
					V			
	dro	роі	ut_1	li	nput:	(]	None, 65)	
	Dr	op	out	0	utput:	(]	None, 65)	
_					V			
	der	ise	_2		input:		(None, 65)	
L	Dense relu		0	output	: (None, 101)		
					V			
	dropout_2 Dropout		ir	nput:	()	None, 101)		
			οι	itput:	()	None, 101)		
					V			
	dense_3				inpu	t:	(None, 101	
De	Dense sigmoid		id	output: (None, 1		(None, 1)		

m_X, m_S parameter labels in the train set

