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Introduction
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• The SM predicts the existence of the Higgs field ( ) and its potential V( )


• In the early Universe V( ) had a minimum at  and all particles were massless 

• A few pico seconds after the Big Bang a phase transition to a new ground state  occurred and many particles 

acquired mass  

• The SM Higgs boson (H) is a result of this spontaneous symmetry breaking (SSB)


ϕ ϕ

ϕ ϕ = 0
ϕ ≠ 0

• The shape of the potential has a big impact on the physics of the Universe!


• In the SM the phase transition is smooth and V( ) 


• A first order phase transition could explain the matter-anti-matter 
asymmetry in the Universe


• Furthermore, the Higgs field could naturally connect to dark matter and 
cosmology’s inflaton could be some sort of extra Higgs boson!

H =
1
2

m2
HH2 + O(H3)

Nature 

https://www.nature.com/articles/s41586-022-04899-4
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Targeted signals
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mS = mbb̄

mH = mγγ

mX = mγγbb̄

• Several BSM models predict the existence of additional scalars with different masses and cross sections


• We search for a heavy scalar X decaying into a lighter scalar S and the SM Higgs H where S  and H  

• In order to keep the search as model-agnostic as possible:


• A wide range of  signals are targeted:   GeV and 


• The production cross section is always assumed to be of 1 fb


• SM decays are assumed for both H and S

→ bb̄ → γγ

mX, mS 30 ≤ mS ≤ 500 170 GeV ≤ mS ≤ 1 TeV
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How to target all this points?
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We want to use a Neural Network (NN) to discriminate signal from background, but how to train our network?


A. Target groups of similar signals 

• Train a NN with multiple signals


B. Target each signal individually:

• Train an individual NN for each signal

• Train a NN parametrised on  (PNN)


All these options have been tested/considered!

mX, mS

→
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What is a PNN?
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• Issue: Some or all of the components of  may not be meaningful for a 
particular target class (i.e.   for background)


• Solution: randomly assign values to those components of  according to 
the same distribution used for the signal class


θ̄
mX, mS

θ̄

arxiv: PML for HEP

• Typical networks take a vector of features  and after training 
the network gives 


• If the task is part of a larger context, described by one or more 
parameters , one can use both as input to obtain  
yielding different output values for different choices of  

x̄
f(x̄)

θ̄ f(x̄, θ̄)
θ̄

 θ = mX, mS

https://arxiv.org/pdf/1601.07913.pdf
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Event selection
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The  distribution is used to divide events in a SR (  ) and a Control Region or SB (  )


 The SB allows us to:


• Correct the normalisation of the large non-resonant background ( +jets) from data


• Carefully study the full data-to-simulation comparison for the variables of interest


 The SR gives a much better sensitivity to all of the targeted signals since in all of them 

mγγ mγγ ∼ mH mγγ ≁ mH

→

γγ

→ H → γγ
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Predicted number of events
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The largest non-resonant and resonant 
backgrounds are +jets, ,  and 


High mass signals have a much larger 
selection efficiency than low mass

γγ ttH ggH ZH

ATLAS work in progress

ATLAS work in progress
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Set splitting
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Train Validation Test

Events

Test Train Validation

Validation Test Train

CV Fold 1

CV Fold 2

CV Fold 3

• The amount of available labeled data is limited so we need to split it properly to assess the performance of our network!


• Train set: used for training

• Validation set: used for assessing the performance on unseen data

• Test set: used to test the final performance in a completely unbiased data


• Cross validation (CV) is used to recover all of the events which will be needed for the statistical analysis
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Input variables
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 m*
γγbb̄

= mγγbb̄ − (mγγ − 125 GeV)  mbb̄

• The natural choice of input variables for a PNN with  are  and 


• To avoid correlations with , which is used to define the SR and SB, the modified  is 

used instead of 

θ = mX, mS mγγbb̄ ∼ mX mbb̄ ∼ mS

mγγ m*
γγbb̄

= mγγbb̄ − (mγγ − 125 GeV)

mγγbb̄

• Less is more: We tested including other variables to the trainings but they seem to confuse the PNN more than help it - we 
think this is due to our limited amount of data and training time

ATLAS work in progressATLAS work in progress
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Hyperparameter optimisation
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Parameters are optimised by Keras tuner (maximises the Area-Under-the-Curve of the validation set)

The dataset is very unbalanced - the number of background events is much larger than the number of signal events - the following 
parameters are defined to help a NN or PNN learn to separate signal from background:


• Class weight:     for  


• Initial bias in output layer:  


• Batch size: Minimum size such that there are ~ 200 events of each signal (avoids confusing the network due to statistical 
fluctuations in the number of signal events)

weight(i) =
# total events
2 ⋅ #i events

i = signal or background

b =
#signal events

#backgorund events
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PNN architecture
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Chosen hyper-parameters

4 hidden layers output layerinput layer

n[1]
h = 85

n[2]
h = 45

n[3]
h = 49

n[4]
h = 81

mbb̄

m*
γγbb̄

mX

mS

P(signal)

n[5]
h = 1

n[0]
h = 4

Activation functions: ReLu for all hidden layers and a sigmoid for output layer
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PNN output
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• The PNN score fit is capable of discriminating the targeted  ( ) signal from background


• Signals with  values far away from  are easily classified as background (  = 0= while signals with  ~   result 
in  ~ 0.5

θ mX, mS

mX, mS θ P(signal) mX, mS θ
P(signal)

ATLAS work in progressATLAS work in progress
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PNN performance
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CV fold 1 (similar results for folds 2 and 3)

AUC for train and validation sets Validation set AUC  (mX, mS)

Independent of the  parameters(mX, mS)

• Very similar AUC   values are obtained for the train and validation sets indicating that there is no overtraining(mX, mS)

ATLAS work in progress
ATLAS work in progress
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Let’s take a closer look!

14

• The PNN is better at separating better signals with high  than with low 

• Would a NN do better?

mX

ATLAS work in progressATLAS work in progress
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NN vs PNN?
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AUC PNN val (train-set) NN val (train-set)

X170_S130 0.76 (0.74) 0.83 (0.82)

X250_S100 0.96 (0.96) 0.95 (0.95)

X750_S110 0.99 (0.99) 0.99 (0.99)

• NNs have been trained with the same input variables as the PNN for 3 specific signals.


• The hyper-parameter optimisation is performed in order to find the best architecture for each case.

• The NNs also perform worst at low   This signal is simply harder to separate from background


• The PNN performs better than the NN at intermediate  values  The PNN can learn from other masses improving the 
performance with respect to the NN


mX →

mX →

 The NN performs 9% better than the PNN→

 Similar performance →
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Conclusions
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• A single NN parametrised as a function of 2 resonant masses ( ) can be used to separate multiple resonant signals from 
background


• Given the difficulty of the task, the network performs better when the bare minimum amount of variables are given 

 LESS is MORE 

• The PNN performs equal to or better than an individual NN trained with the same input variables for most ( ) values 


• The NN is only 9% better than the PNN for the signal which is the most difficult to separate from background


• Training a single NN to target multiple signals (not shown today) gives the worst performance


mX, mS

→

mX, mS
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Backup
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Training with MC event weights - Yay or Nay?
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The NNs shown today do not use MC events weights because


• Not including event weights speeds the training of the NN considerably


• The network learns better when not using event-weights (improvement in performance)


My suggestion  Consider using class weights instead!→

  mbb̄  m*
γγbb̄

= mγγbb̄ − (mγγ − 125 GeV)
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Activation functions
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• Each neural network neuron has an activation function.

• Different functions are often used in different layers

• These functions are used to transform 


• Z[k] = w[k]
k ⋅ a[k−1] + b[k]

• ReLu activation functions are most commonly 
used in the hidden layers.


• Sigmoid/tanh activation functions are often used 
in the output layers because they predict values 

. They also tend to slow down 
the training when used in hidden layers of deep 
networks.

∈ [0,1] ([−1,1])
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Data/MC in SB 
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ATLAS work in progressATLAS work in progressATLAS work in progress
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Is there overtraining for any ( )?mX, mS
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• Train AUC / Val AUC is always very close to 1 so it doesn’t suggest any overtraining

ATLAS work in progressATLAS work in progress
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Comparing NN architectures
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PNN NN X750_S110NN X250_S100NN X170_S30
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 parameter labels in the train setmX, mS
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