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Standard Model

Standard Model (SM) — set of mathematical principles that, with an experimental verification over time, resulted in a physics theory.

Describes the fundamental forces (three out of four): Describes the elementary particles:
three generations of matter interactions / force carriers
(fermions) (bosons)
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Tau Lepton

Tau (t) lepton — an elementary particle being the third and last generation of the lepton family.

« Similar to its cousins (electron and muon) but much heavier
« The only lepton decaying leptonically and hadronically

Name Tau / Tau Lepton / Tauon
Symbol T~
Name Tau
Electric Charge —1
» Hard to detect Spin 1/2
Lifetime 2.903 x 10713
Mass 1776.86 MeV/c?
Flight distance 87.11 um
Composition Elementary Particle
Type Fermion
Family Lepton
Generation i
Interactions Gravity, Electromagnetic, Weak

Discovered 1975




Supersymmetry

Supersymmetry (SUSY) — an extension of the SM that could provide solutions to some of the unsolved problems by introducing a
symmetry between bosons and fermions resulting in a SUSY partner.

Tau sector is very interesting

The known world of The hypothetical world of
Standard Model particles SUSY particles
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SUSY could help better understand the Universe: BARK
« Hierarchy problem with Higgs boson (low mass problem) EN R
» Could unite strong force with electroweak force (unify 3 fundamental forces)
» Solution to dark matter
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https://arxiv.org/pdf/1808.06358.pdf

Tau+X Analysis
Overview




Previous Analysis

Last publication:

Search for squarks and gluinos in final states with hadronically p . o
decaying tau leptons, jets, and missing transverse momentum using q 0 T G
pp collisions at 1/s=13 TeV with the ATLAS detector. - \l
Phys. Rev. D 99, 012009 AN -
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https://arxiv.org/pdf/1808.06358.pdf
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General Workflow

Analysis Interpreter
(Jupyter Notebook)

)
{ |

Parameters ——  Analysis Container — Analysis Processor ——  Analysis Plotter <—— Fields

f f }
Backgrounds Cuts Histograms
Signal Data Processing
Machine Learning
}
Environments:
« ROOT ROQOT I/O: Data Processing: Data Visualisation: ML:
. 2 .
PYROOT uproot matpltlib
« UpROOT .
NumPy" seabern
dmlc

il pandas XGBoost



Machine Learning Workflow

ML workflow:
data UpROOT /O | jagged cutting |  cutjagged |Pre-processing| rectangular | Machine
~1M entries ~100s awkward-array ~0.5s awkward-array ~10s awkward-array Learning
«  Algorithm: Boosted Decision Trees (BDTs) dmic conversion | ~20s
« Framework: Extreme Gradient Boosting (XGBoost) X GBOOS’t i
rectangular ,
Pipelines: pandas-array

* Regression
; . . SUSY analyses utilising ML algorithms ) ]
* Binary-classification XGBoost Execution Time:

 Multiclass-classification

Fitting  Predicting
CPU: ~76min  ~6.5min

Functionalities:

GPU: ~4min ~5s

« Stopping function preventing overfitting
Feature importance plotter
Cross-validation:

« k-fold cross-validation
Hyperparameters tuning:

» exhaustive grid-search

« randomized grid-search @ ok Mot otk @ arieondt Aarmeiststs
GPU computing Source: ATLAS Machine Learning Forum

. Highly popular and widely recognized
ML algorithm in the HEP community
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XGBoost

XGBoost — external open-source library (framework) based on the Gradient Boosting. In comparison to the regular Gradient Boosting
algorithm, the XGBoost increases speed and performance significantly.

dmlc

XGBoost

Major improvements:

» Parallelized tree building

* Tree pruning

« Efficient handling of missing data

» Regularization to prevent overfitting
* In-built cross-validation capability

» Hardware optimization
Forest )

{ Decision
Trees

\:':;- Bagging

\ Gradient

— Block T

Boosting

Parallelism

S
Ak
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Machine Learning

Challenges




Padding

entry subentry

Challenge:
Kinematic data (mainly momenta and related quantities) is heavily nested / jagged.

v

Unfortunately, most of the machine learning

—_—) H
algorithms do not work well with such arrays. Rectangular format is preferred.

To make datasets ML-friendly, we are using UpROOT and Awkward Array as processing tools.

Current solution:
Setting up a certain threshold for a number of entries each event can take and padding with zeros.

Example:
threshold = jet_pt : : .

{ K \ jet_pt_Of[Jjet_pt_1{|jet pt_
eventl = [400, 200, 150, 100] [400, 200, 150] 400 200 150
event2 = [500, 300, 200] padding [500, 300, 200] feature 500 300 300
event3 = [100, 300] > [100,300, 0] engineering = | 100 300 0
event4 = [350] [350, 0, 0] 350 0 0

Disadvantages:

* loss of information — [

« possible bias introduced from padding — [
 study the effect from padding




Negative Weights

Challenge:
There are events with negative weights.

Unfortunately, during the training process
XGBoost ignores such events.

Only positive weights are allowed.

Many ML tools are not thoroughly tested with respect to negative weights.

Current solution:
Training with events that have positive weights and evaluating using all events.

IUnweighted Countplot

| Weighted Countplot

Count
Count

WotvW—opywW—ev Z—1 Z—puy Z—ee Z— v diboson t
background

1 1 R — -
WotwW-pW—ev Z—-m Z—pyy Z—ee Z— vv dboson

background
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Summary




Summary

HVL and UiB interested in the continuation of search for squark & gluino — tau(s) + jets + MET (reference: SUSY-2016-30)

The “baseline” analysis script has been initialized

Implementation of ML techniques:
o BDTs (XGBoost) — in progress
o Neural Networks — soon to be started
o Other ML algorithms will also be considered

Any comments and ideas are welcome

o Methods used in classification problems in data analysis of HEP particle collisions when facing challenges with jagged arrays
= Are there other possibilities?

o Rectangularization
= Padding: zeroes, mean / average value / large negative numbers — how does it influence a model?
= When discarding less energetic particles (jets) — how much do we lose in the predictive power?

o Negative weights
= How to deal with events with negative weights during the training process?


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-30/

Thank you for your attention!







Bias & Variance

Ya Ya
y(x) Bias — error rate \Variance — error rate y(x)
. of a training data of a testing data
° O
: HighIBias High Variance
Underfitting Overfitting
@
:X :X
Y4 Y 4
y(X) Methods for finding the sweet spot: y(X)
? * Pruning ’
) Saggl_ng Ensembles
« Boosting
* Regularization |
® « Lasso regression (L1) ®/
/@ - Ridge regression (L2) O
> » 0
X



Decision Tree

Tree-based algorithms are commonly used for supervised machine learning problems.

ecision tree — is a representation of a decision-making process. In general, a decision tree asks a question and then classifies the
data based on the answer. The classification can be either for discrete or numerical values.

Several methods to quantify impurity: n Decision Tree
* Gini Impuri > 1 — )2
« Entropy/Information Gain im1
. Node
» Chi-Square
False
5\2  /3\2)\_
AA 1-((3) +(3) )-046875 Decision
A JAN Node
True \ Pruning
\
\
Pros: 4 Cons: &g Leaf A
* Easy to visualize and understand « Often inaccurate Node (\ )
 Little to none data preparation * Prone to overfitting — high variance o

» Universal (classification & regression) ¢ Unstable — small change in data can lead to a big change in structure

21



Ensembles

nsemble learning — is a model that makes predictions based on a number of different models. By combining individual models
(weak/base learners), the ensemble model tends to be more flexible (less bias) and less data-sensitive (less variance).

Two most popular ensemble methods are:
« bagging — training a lot of individual models in parallel way. Each model learns independently from each other.
» Bagging (Bootstrap Aggregating)
« Random Forest
* boosting — training a lot of individual models in a sequential way. Each model learns from mistakes made by the previous model.
« AdaBoost (Adaptive Boosting)
« Gradient Boosting
« XGBoost (Extreme Gradient Boosting)
« LightGBM, Catboost, ...

Pros: '

« Perform much better than single individual models
» Bias/variance tradeoff « Computationally expensive
* Unlikely to underfit/overfit

SUSY analyses utilising ML algorithms

Bagged/Boosted Decision Tree (BDT)

« Highly popular and widely recognized algorithm in the High Energy Physics community Boosted Decision Trees @ Neural Networks
. Use d to ClaSSi fy phySiCS prOCGSSGS @ Recurrent Neural Networks Variational Autoencoders
e Used to define analysis regions Source: ATLAS Machine Learning Forum 5,



Gradient Boosting

Data
Random with replacement
C X )
C X
o0
Train
Data ® o @ ° .‘ ® ® o
A1 o © O @ @O0 @ o
E== ® ® ® O ® ® ® o ©
n, D, | |n, D,| | n, D, n, D,
N— 7 S~ S N—
Test Test ; Train _ Train Train Train
Data €s 4
/ Model Model Model Model
\

X0, X1,X2, ) X

™~

|
_ Classification

Prediction

Mean

Prediction

™ reduce sensitivity

@ @ highergradifnt data point

o aL(lef(xl))
m T T )

Shallow Trees

l

low bias
high variance

X0, X1,X2, e, Xi
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Confusion Matrix

Accuracy Score
* Number of correct predictions over all predictions.

TP + TN Predicted Class
P
TP+ TN+ FP+ FN > ~
Precision Score Positive Negative
» Number of correct positive predictions over all positive predictions. [ —— Sensitivity
TP Positive True Positive (TP) % o & TP
_— ype Lrror e p——
. (TP + FN)
TP+ FP Actual Class .<
el - 5 Specificity
Recall Score (SenSItIVIty) Negative Fa':?e Po?l:l_ve WE True Negative (TN) TN
., . . - - ype rror e ]
* Number of correct positive predictions over the actual positives. L " (TN + FP)
TP peoatcs Negative Predictive Accuracy
—_ - n
TP + FN jien Value TP+ TN
TR TN (TP + TN + FP + FN)
F1 Score iR

* A weighted harmonic mean of precision & recall.
Recall - Precision

. Recall + Precision

24



K-Fold Cross-Validation

Cross-Validation is a statistical method used to estimate the skill of machine learning models.

Train/Test Split

Data

Train
Data

1, Mmaximize
learning result

Test
Data

11, maximize

learning result

Data

10-Fold Cross-Validation
Data

Running k separate
learning experiments

l

» Testingset - 1
 Trainingset—>k —1

l

Average test results from
k experiments

\

Data

Takes more time but assessment of the
learning algorithm is more accurate.
All the data is used for learning and training.

25



Hyperparameters Tuning

Hyperparameters are parameters that are not directly learnt within estimators. They are usually passed as arguments to the constructor of
the estimator classes.

Grid-Search is a tuning technique that attempts to compute the optimum values of hyperparameters.

"'n_estimators': [25

"learning rate’:

‘max_depth’: [3, 4, 5

‘'min_child w

"gamma': [8.5,

Exhaustive Grid-Search

computes the grid for all the parameter combinations
computing time can take hours or even days

Randomized Grid-Search

computes the grid for random number of parameters
computing time decreases significantly

General parameters — guide the overall functioning

Booster parameters — guide of the individual booster at each step

.
.
.
.
.
.
.
.
.
.
.
.
.

Learning task parameters — guide the optimization performance

booster
nthread

n_estimators

eta

max_depth
min_child_weight
gamma
subsample
colsample_bytree
colsample bylevel
max_delta_step
lambda

alpha
tree_method

scale pos_weight

objective
eval _metric

gbtree
all

automatically found
0.05-0.3
3-10

reg / log / multilog

rmse / error / merror

type of model to run at each iteration
number of threads to use in parallel processing

number of classifiers

learning rate

the maximum depth of a tree

defines the minimum sum of weights in a child
specifies minimum loss reduction to make a split
defines random fraction of observations for each tree
defines random fraction of columns for each tree
defines random fraction of columns for each split in each level
tree’s weight estimation

L2 regularization term on weights

L1 regularization term on weights

tree construction algorithm

balance of positive and negative weights

defines loss function to be minimized
the metric to be used for validation data




ROC & PR Curves (Binary-Classification)

ROC Curve — Receiver Operating Characteristic Curve
PR Curve — Precision-Recall Curve

ROC and PR Curves

Both are used to:

« explain model goodness of fit

 identify the correct threshold to map probabilities value to the actual classes

Used when:
« ROC - there is a balanced class distribution
* PR -there is an imbalanced class distribution

Metrics:
* ROC - Area Under Curve (AUC)

o AUC = [ TPR d(FPR)
where TPR is True Positive Rate and FPR is False Positive Rate
* PR - Average Precision (AP)

o AP =Ry — Ry_1)B,
where R,, and P, are the precision and recall at the n;;, threshold
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