Using computer vision-inspired techniques for event classification on low-level ATLAS-like data.

Aurora Grefsrud aurora.grefsrud@hvl.no

www.learningdarkmatter.com

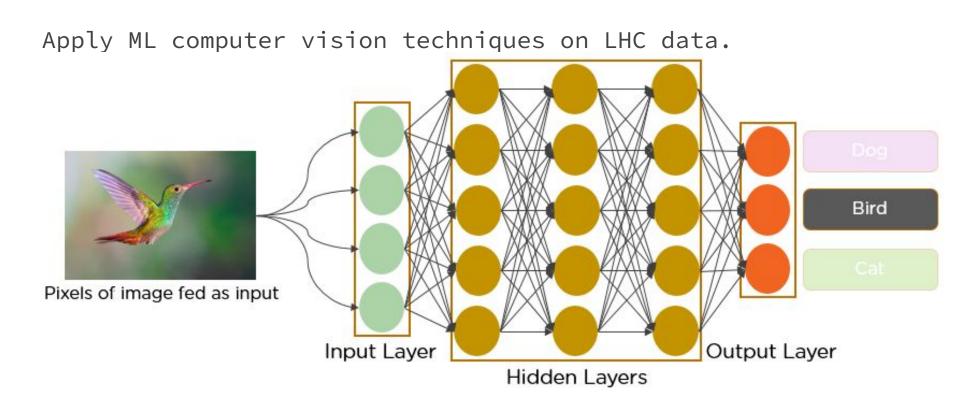
UNIVERSITETET I BERGEN

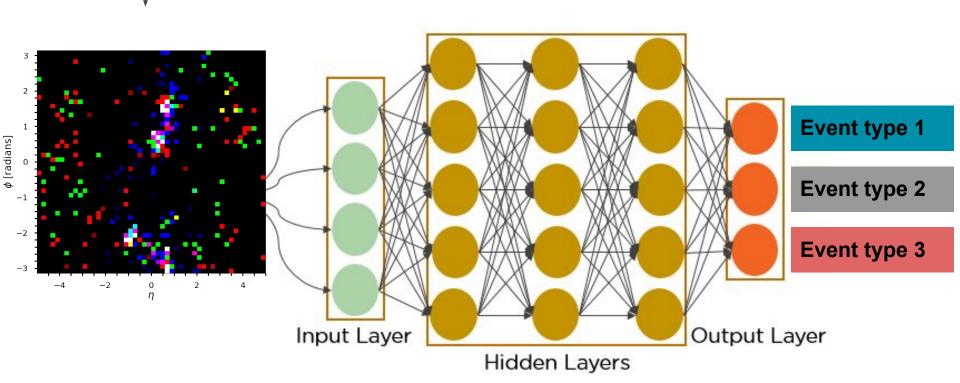
<u>Understanding the Early</u> <u>Universe: interplay of theory</u> <u>and collider experiments</u>

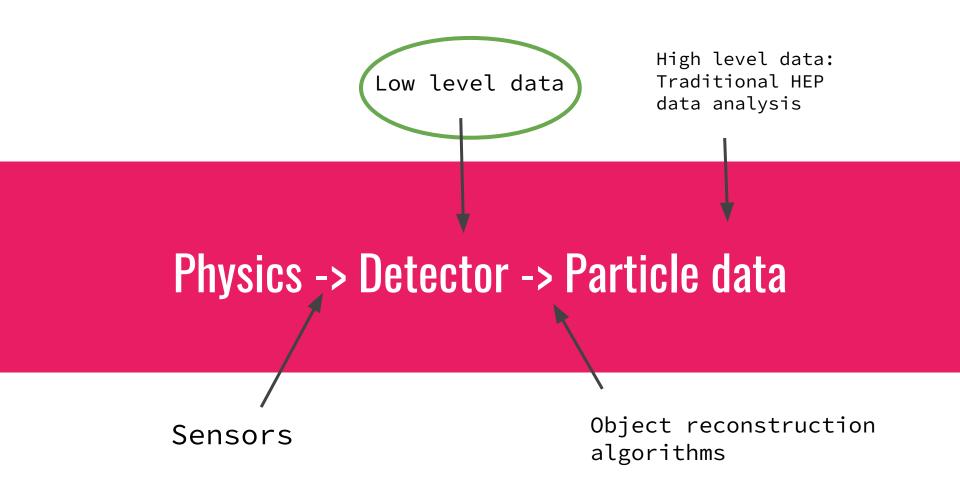
Western Norway University of Applied Sciences

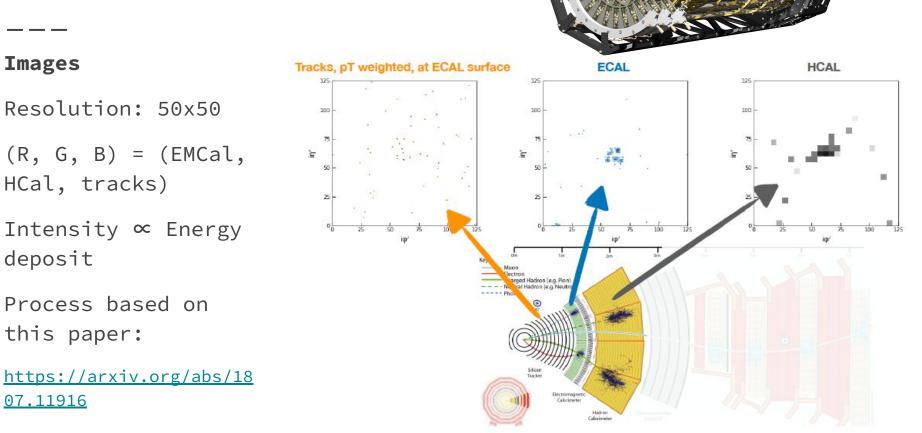
UNIVERSITETET I BERGEN

What is my goal?

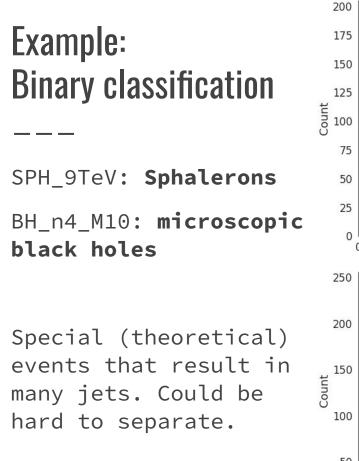


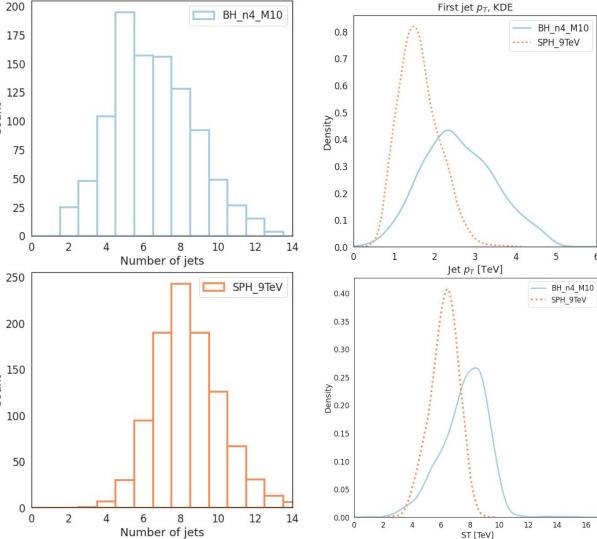


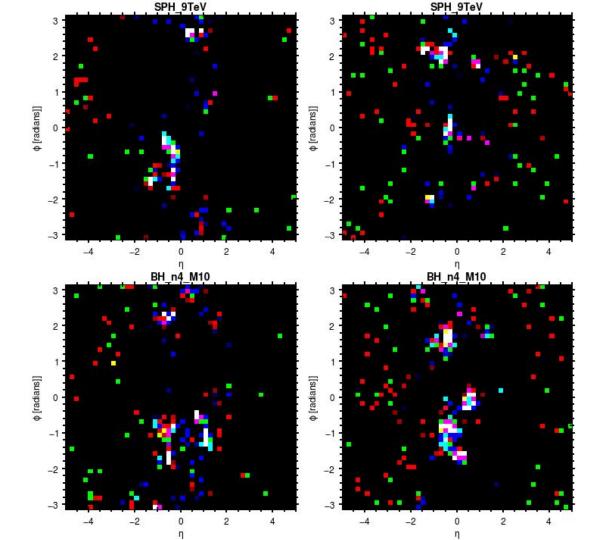




End-to-end classification using computer vision inspired techniques







Convolutional neural network

ResNet18.

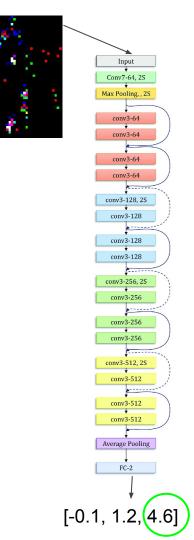
Added circular convolution for panoramic images.

Takes in 50x50 = 2500 features (the image).

Outputs a tensor of values representing the classes, and the maximum value gives the **predicted class**.

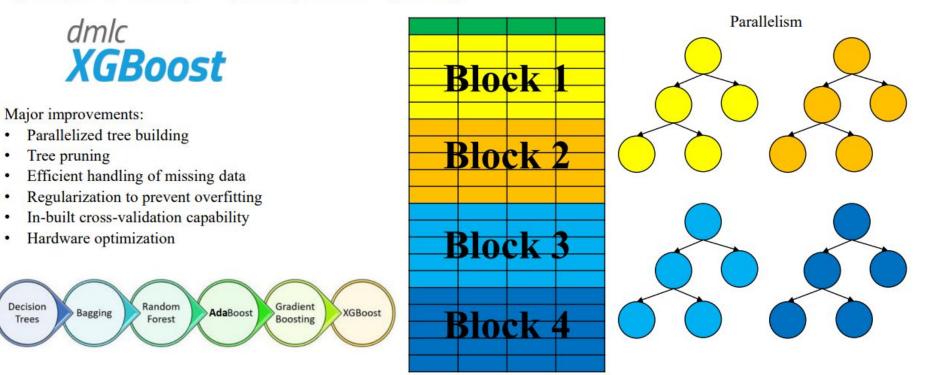
Metric: In the end we can calculate the % correctly classified in each class, the accuracy.

Data augmentation: Random flips across $\eta = 0$ and random rotations in ϕ -direction, completely necessary for training



XGBoost

XGBoost – external open-source library (framework) based on the Gradient Boosting. In comparison to the regular Gradient Boosting algorithm, the XGBoost increases speed and performance significantly.



Xgboost data

Low level data (45 features):

- Five most energetic hits in
 - ECal
 - HCal
 - Tracks

Ehad_0	Ehad_1	Ehad_2	Ehad_3	Ehad_4	Ehad.Eta_(
574.719055	469.435333	411.811890	299.050201	293.904053	-0.818594
1083.457520	488.901917	480.192688	333.622101	230.357330	-1.02049
611.114319	334.008911	247.336731	238.140228	217.595657	0.16008
584.671692	574.643494	408.249054	378.885986	341.893982	-0.079388
687.085571	464.160858	417.404846	382.948364	378.882172	-1.58845

High-level data (39 features):

- First eight jets
- First two leptons

• MET

Jet.Eta_0	Jet.Eta_1	Jet.Eta_2	Jet.Eta_3	Jet.Eta_4	Jet.Eta_5	Jet.Eta_6
-0.761235	-0.376034	-0.386358	-0.358008	0.557922	0.439379	0.289839
-0.355793	-1.065034	0.162526	0.601317	-0.023609	0.551750	0.072058
-0.501687	0.166702	0.749015	-0.579402	0.166687	-0.904145	0.471734
-0.009252	0.593912	-1.416952	-0.461862	1.373964	1.546215	-0.270171
-1.634426	0.558831	0.555065	0.615552	-0.639208	1.104151	-0.186942

Preliminary results

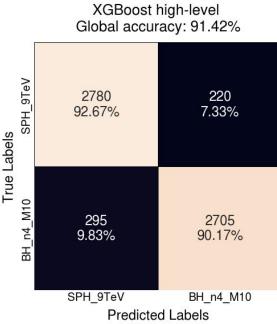
ResNet18 is performing comparable to XGBoost with high-level data, and better than XGBoost with low-level data.

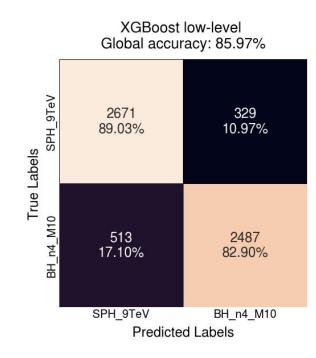
Using low-level data with the CNN we can skip object reconstruction and get similar precision.

	Resnet18 low level	XGBoost low level	XGBoost high level
Binary classification	0.907 +- 0.007	0.861 +- 0.001	0.914 +- 0.002

Confusion matrices

ResNet18 Global accuracy: 91.0% SPH_9TeV 2850 150 95.00% 5.00% True labels BH_n4_M10 372 2628 12.40% 87.60% SPH 9TeV BH_n4_M10 Predicted labels





Thank you for your attention! :)

