Challenges of Flow Harmonic Analysis in LHC Collisions from Large to Small Systems

Anna Önnerstad

Spåtind 2023, Vinstra 4. January 2023

Introduction

Anistotropic Flow

• Collectivity as a probe to the properties of the medium – transport properties such as $\eta/s(T)$, $\zeta/s(T)$

Symmetric and Asymmetric Cumulants

 Symmetric Cumulants measure genuine correlations between two different harmonics m and n

SC: $\left\langle v_{m}^{2}v_{n}^{2}
ight
angle -\left\langle v_{m}^{2}
ight
angle \left\langle v_{n}^{2}
ight
angle$

 By normalizing we get the magnitudes of the genuine correlations

Normalized Symmetric Cumulant (NSC):

$$NSC(m, n) = \frac{SC(m, n)}{\langle v_m^2 \rangle \langle v_n^2 \rangle}$$

 Generalized symmetric cumulants with different moments - additional information!(Skewness,Kurtosis)

AC:
$$\left\langle v_m^4 v_n^2 \right\rangle_c$$
, $\left\langle v_m^6 v_n^2 \right\rangle_c$,...

$$\begin{array}{l} \mathsf{AC}_{2,1}(\mathsf{m},\mathsf{n}) \equiv \langle (v_m^2)^2 v n_n^2 \rangle_c = \langle v_m^4 v_n^2 \rangle_c \\ = \langle v_m^4 v_n^2 \rangle - \langle v_m^4 \rangle \langle v_n^2 \rangle \\ - 2 \langle v_m^2 v_n^2 \rangle \langle v_m^2 \rangle + 2 \langle v_m^2 \rangle^2 \langle v_n^2 \rangle \end{array}$$

Normalized Asymmetric Cumulant (NAC):

$$NAC_{2,1}(m,n) = \frac{AC_{2,1}(m,n)}{\langle v_m^2 \rangle^2 \langle v_n^2 \rangle}$$

• (A)Symmetric Cumulants will only be presented for large systems

Challenges in Large Systems

Sensitivity - Bayesian approach

● Higher order flow observables are very sensitive to QGP parameters and helped to reduce the uncertainty of model parameters → getting closer to pin down the transport properties of QGP.

Verifying the experimental biases on the higher order flow harmonic measurements

- Inputs shown in the sketch:
 - \bigcirc v_n information (True)
 - Multiplicity classes (Detector effect)
 - Non Uniform Acceptance (Detector effect)
- Event by event fluctuations for multiplicity and v_n not regarded in ToyMC.

Can we go higher than n=9?

- Input v_n spectra from JHEP05 (2020) 085 and exponential fit for n > 8.
- Well recovered for n=10 for all centrality classes, but not for n > 10
- Why?
 - \bigcirc Increased the multiplicity $N_{ch} \times 1000$
 - $N_{ch} \times 1000 + \times 10$ statistics
- $\hfill \bigcirc$ With larger multiplicity and more events \rightarrow Converges to the input!

High precision flow results - Symmetric Cumulants

 Accessing the temperature dependence of η/s(T)

ALICE, Phys. Rev. Lett. 117 (2016) 182301, Editors' Suggestion

ALICE, Phys. Rev. C 97 no. 2, (2018) 024906

• Very challenging measurements because of their required high precisions (i.e 10^{-6} SC(m,n)) and difficulties in correcting experimental biases.

High precision flow results - Asymmetric Cumulants A First Look in Data

- Tension between data and model predictions for $NAC_{2,1}(2,3)$ and $NAC_{3,1}(2,3) \rightarrow$ Constraints on the initial state
- Information on the model description of the fluctuations and correlations of v_n

Challanges:

- Even higher precision required depending on which AC observable, e.g. AC_{3.1}(2,3) ≈ 10⁻¹².
- Improve the Systematic errors

Challenges in small systems $\longrightarrow \longleftarrow \bigcirc$

Small Systems

Signs of collective behaviour in small systems

O Cumulants and Two-Particle Correlations previously used → jet contributions are not fully removed.
 Multiplicity definition and Jet acceptance are different between experiments → how to compare?

Small Systems

V

Improved Flow Extraction Method

More details here

$$(\Delta arphi) = G(1 + 2v_{2,2}\cos(2\Delta arphi) + 2v_{3,3}\cos(3\Delta arphi)) + \textit{F} Y_{ ext{LM}}(\Delta arphi)$$

Assumptions

- No ridge or flow in the LM-template
- No away-side jet modifications (quenching) in HM events relative to the LM-template
- Subtract the remaining away-side jet contribution in high multiplicity event relative to the low multiplicity term
- F: Ratio of away-side jet fragments in high-multiplicity to low-multiplicity events (60–100%), $F = 1.304 \pm 0.018 \rightarrow$ The effect is 30% for 0-0.1% multiplicity in pp 13 TeV, hence must be considered.

Small Systems

Verifying Low Multiplicity Template Fit

- Comparable with ATLAS result
- Note that multiplicity class for ATLAS is classified with central particles ($|\eta| < 2.5$, $p_T > 0.4$ GeV/c), $N_{Mult}^{ATLAS} > 60$
- Not an apple to apple comparison

Multiplicity Mapping Between Experiments

F		
Exp.	ALICE	ATLAS
Mult. Class (%)	$N_{ m ch}(\eta < 0.5)$	$N_{ m ch,ATLAS}^{ m rec}$ $(p_{ m T}>0.4, \eta <2.5)$
0-0.1	31.33	84.07 (80.33)
1–5	20.02	50.10(48.83)
5–20	13.99	33.70(29.15)
20–60	7.2	16.11(14.12)
60–100	N/A	5.23

- The EPOS LHC is scaled to the measurements.
- Addition p_T cut applied to have the same kinematic cut as ATLAS.
- MAP between ATLAS and ALICE
- Different experimental multiplicity definitions can be compared by using the measured $dN/d\eta$ distributions.

Summary

Large Systems:

 \odot Both observables presented require high precision measurements \rightarrow large statistics needed.

• Another challenge is how to improve systematic uncertainties.

Small Systems:

 \bigcirc Jet contributions are not fully removed \rightarrow solved with *low multiplicity template fit method*.

summary

Thank you for your attention!