Universitetet i Stavanger

The heavy-ion theory road map

Aleksi Kurkela, UiS Spåtind 2023

The A heavy-ion theory road map

Aleksi Kurkela, UiS Spåtind 2023

Elementary particle matter

LHC, RHIC, FAIR, NICA,...

LIGO+Virgo+Kagra, NICER, eXTP,...

"Standard picture" in p-p collisions

- Initial state radiation
- Hard processes
- Multi-parton interactions
- Fragmentation
- Hadronisation
- ...

Pythia, Herwig,...

But no final state interactions

More is not more of the same

The **kind** of particles changes with multiplicity

⇒ "Significant new physics required to reproduce the qualitative features"

Sjöstrand, Fischer JHEP 1701 (2017) Bierlich et al. JHEP 10 (2018), Phys.Lett.B 835 (2022)

Smooth trend from *pp*, *pPb*, *PbPb*

ALICE Nature Phys. 13 (2017) 535-539

Lund group

"Standard picture" in Heavy-ion collisions

Creation of a droplet of strongly coupled fluid: quark-gluon plasma

Relativistic fluid dynamics

 $\partial_{\mu}T^{\mu\nu} = 0$

 u_{μ} = flow field, rest frame of the medium

$$T^{\mu\nu} = T^{\mu\nu}_{eq.} + \eta(T) \nabla^{<\mu} u^{\mu>} - \zeta(T) \{g^{\mu\nu} + u^{\mu} u^{\nu}\} (\nabla \cdot u) + \dots$$
$$T^{\mu\nu}_{eq.} = \text{diag}(e(T), p(T), p(T), p(T))$$

"Standard picture" in Heavy-ion collisions

Creation of a droplet of strongly coupled fluid: quark-gluon plasma

Relativistic fluid dynamics

Expansion around local thermal equilibrium ⇒ Infinite number of final state interactions

Standard picture in Heavy-ion collisions

Questions:

- What are material properties of QGP? $p(T), \eta(T), \zeta(T), \dots$
- How does the fluid arise from the final state intercations? How are the two "cartoons" connected

Characterization of Quark-Gluon plasma

Equation of state:

- Can be computed non-perturbatively using lattice (for $\mu_B = 0$)
- Rapid change reflects a transition from hadronic matter to quark gluon plasma
- Other transport properties can not be accessed from lattice due to sign problem
 ⇒ Model/limit calculations and empirical determination

Helsinki group

Single-event calorimetric distributions of ~10k charged particles, PbPb @ LHC

More viscous the fluid, less there is flow:

$$v_2 \approx v_2^{ideal} \frac{1}{1 + K/K_0}$$
$$K \sim \frac{l_{micro}}{l_{macro}} \sim \frac{\eta}{sT} \frac{1}{R}$$

Suite of data: Different harmonics, correlations between harmonics, event-by-event distributions, p_T -spectra etc..

Copenhagen group, You Zhou's talk Alice Ohlsen's talk

Hydro models and Bayesian inference:

Models contain:

- Initial conditions
- Fluid dynamics
- Particlization

• • •

Several dedicated codes

- Vishnu, SuperSonic, Music, Trajectum,...
- State-of-the-art: ~600 data point, 20 parameters

Jyväskylä group, Anna Onnerstad's and Maxim Virta's Talk Emil Nielsen's talk

What does a small viscosity imply?

Wave-packages not clearly separted between interactions

What does a small viscosity imply?

No non-perturbative calculation in QCD, but **strong-coupling limit** in QCD-like theory:

Super Yang-Mills \mathcal{N} = 4, $N_c \to \infty$, $\lambda N_c \to \infty$, Starinets, Son, PRL 87 (2001) $\eta/s = rac{1}{4\pi} pprox 0.08$

 \Rightarrow "Strongly coupled" fluid paradigm

What physics is at play in different systems?

How does the strongly coupled fuild emerge from the final state interactions? What is the microscopic structure of Quark-Gluon Plasma?

No final-state interactions, Free streaming

Ś

Inifinite final-state interactions, Ideal fluid dynamics

Microscopic structure of quark gluon plasma:

Microscopic structure becomes accessible when fluid-dynamical paradigm is strained, in systems that are **hydrodynamizing**:

- Jets in dense medium
 - hydrodynamization as a function of energy
- Early-time dynamics of Heavy-Ion collisions
 - Hydrodynamization as a function time
- Transition from pp, pA to AA
 - Hydrodynamization as a function of system size

Microscopic structure of quark gluon plasma:

Microscopic structure becomes accessible when fluid-dynamical paradigm is strained, in systems that are **hydrodynamizing**:

• Jets in dense medium

- hydrodynamization as a function of energy
- Early-time dynamics of Heavy-Ion collisions
 - Hydrodynamization as a function time
- Transition from *pp*, *pA* to *AA*
 - Hydrodynamization as a function of system size

• In vacuum, jets hadronize:

• In medium, jets **thermalize**:

- At weak coupling α_s , the evolution can be followed in effective transport theory:
 - $C_{2\leftrightarrow 2}[f] C_{1\leftrightarrow 2}[f]$ 0000 0000

LO: Arnold, Moore, Yaffe, JHEP 0301 (2003) 030 NLO: Ghiglieri, Moore, Teaney, HEP 03 (2016) 095

 Soft and collinear divergences lead to non-trivial in-medium matrix soft in-medium screening; collinear: LPM, BDMPS-Z elements:

Bergen group, Johannes Isaksen's talk

- In vacuum: DGALP $t_{\text{DGLAP}} \sim \frac{E}{Q^2}$
- In medium:
 - frequent soft scatterings with medium, mom. diffusion: $\Delta p^2 \sim \hat{q}t$
 - Scatterings lead to virtuality: $Q^2 \sim \hat{q}t$
 - Now offshell particle may split collinearly: $t_f \sim E/Q^2 \sim \sqrt{E/\hat{q}}$

• Splitting time
$$t_{\text{split}}(E) \sim \frac{1}{\alpha_s} t_f \sim \frac{1}{\alpha_s} \sqrt{\frac{E}{\hat{q}}}$$

QED: Landau, Pomeranchuk, Migdal 1953. QCD: Baier Dokshitzer Mueller Peigne Schiff NPB483 (1997) Bergen group, Johannes Isaksen's talk

Simple numerical example: "Bottom-up thermalization"

AK, Lu, PRL 113 (2014) 18, 182301

Simple numerical example: "Bottom-up thermalization"

AK, Lu, PRL 113 (2014) 18, 182301

Simple numerical example: "Bottom-up thermalization"

AK, Lu, PRL 113 (2014) 18, 182301

Structure of a physical jet much more complicated:

- Harder fragments more coolimated
- Softer particles more isotropic
- Large and small angle scattering
- Final state resacttering mixed with vacuum fragmentation
- Baground medium time-dependent

Qualitatively

Quantitatively: Several dedicated codes

Martini, Sherpa, JetScape, HydJet, CoLBT, ...

Oslo and Bergen groups

AK, Wiedemann PLB740 (2015) 172-178

- Jet-medium interactions embedded in a complete phenomenological setups
- Connection of these ideas to observables challenging but significant progress

Oslo and Bergen groups

Flow

Microscopic structure of quark gluon plasma:

Microscopic structure becomes accessible when fluid-dynamical paradigm is strained, in systems that are **hydrodynamizing**:

• Jets in dense medium

- hydrodynamization as a function of energy
- Early-time dynamics of Heavy-Ion collisions
 - Hydrodynamization as a function time
- Transition from e^+e^- , pp, pA to AA
 - Hydrodynamization as a function of system size

Schenke, Schlichting, PRC 94 (2016)

• At weak coupling α_s : Initial condition of HIC far from equilibrium, described by "color-glass-condensate" effective theory

McLerran, Venugopalan PRD49 (1994) 2233-2241, PRD49 (1994) 3352-3355; Lappi, McLerran NPA 772 (2006); Gelis et. al Int.J.Mod.Phys. E16 (2007) 2595-2637, Ann.Rev.Nucl.Part.Sci. 60 (2010) 463-489,

 Approach to equilibrium can be followed with the same transport-framework as jet thermalization

Jyväskylä group

- "Bottom-up" thermalization:
 - Initial condition overoccupied and anisotropic
 - Expansion makes system **underoccupied** before thermalization
 - Initial partons undergo a **radiative cascade** to form a medium

Hydrodynamics approached smoothly and automatically

AK, Zhu, PRL 115 (2015) 18, 182301 AK et al. PRL 122 (2019)

$$\tau_i \approx 1.1 \text{fm/c} \left(\frac{4\pi(\eta/s)}{2}\right)^{3/2} \left(\frac{\langle \tau s \rangle}{4.1 \text{GeV}^2}\right)^{-1/2}$$

Romatchke 1704.08699; Blaizot, Yan 1712.03856; Strickland 1809.01200; Almaalol et al 2004.05195; Kamata et al. 2004.06751; Du, Schlichting 2012.09079,

•••

- Many initial conditions decay quickly to non-equilibrium attractor before hydrodynamization
 - Observed in wide variety of models with HIC geometry
 - Connection to resurgence and trans-series

Microscopic structure of quark gluon plasma:

Microscopic structure becomes accessible when fluid-dynamical paradigm is strained, in systems that are *hydrodynamizing*:

• Jets in dense medium

- hydrodynamization as a function of energy
- Early-time dynamics of Heavy-Ion collisions
 - Hydrodynamization as a function time
- Transition from e^+e^- , pp, pA to AA
 - Hydrodynamization as a function of system size

"Collectivity" arisies gradually as a function of system size:

Once $\tau \sim R$, the system explodes in 3D and the evolution terminates:

Once $\tau \sim R$, the system explodes in 3D and the evolution terminates:

Once $\tau \sim R$, the system explodes in 3D and the evolution terminates:

Important complementary developments of final-state interactions from Monte-Carlo side

Lund group

Conclusions

Wenya Wu's talk

• I could have talked about many other things

Theoretical development in relatvistic fluid dynamics, magnetohydrodynamics, using HIC to study nuclear strucutre, anomalies and chiral magnetic effect, vorticity, spin-polarization and Λ-polarization, phase diagram and critical point, quarkonium suppression, nuclear PDFs, connection to neutron stars, ...

Debojit Sarkar's talk

- Heavy-ion (and light-ion) collisions allow a diverse and interesting inroad to physics of QCD extreme conditions
- HIC started as the study of QCD in finite temperature
 - Hydrodynamical modelling and material properites of Quark-Gluon-Plasma at precision level
- The question has evolved to include how the collective behaviour emerges from the fundamental QCD inderactions
 - How does the system go from free-streaming to strongly coupled fluid?

Extra slides: Heavy-ion collisions and neutron stars

Elementary particle matter

LHC, RHIC, FAIR, NICA,...

LIGO+Virgo+Kagra, NICER, eXTP,...

Elementary particle matter:

Elementary particle matter:

Theoretical tools from HIC to NS

Resummed (Hard-thermal-loop) perturbation theory

Theoretical tools from HIC to NS

pQCD calculations, developed for HIC, significantly affect the EoS inference in Neutron Stars

Gorda, Komoltsev & Kurkela 2204.11877 Also: Annala et al. PRX 12 (2022), Altiparmak, Ecker, Rezzolla 2203.14974, Han, Huang, Tang & Yi-Zhong Fan 2207.13613, Marczenko, McLerran, Redlich & Sasaki 2207.13059, ...

Theoretical arguments from HIC to NS

From hadronic matter to quark gluon plasma in heavy-ion collisions

Theoretical arguments from HIC to NS

Annala, Gorda, Kurkela, Nätttilä, Vuorinen Nature Physics 16 (2020) 9 Gorda, Komoltsev & Kurkela 2204.11877 Also: Fujimoto, Fukushima, McLerran, Praszalowicz 2207.06753, Kojo PRD 104, ...

Λ 's in NS and the LHC

Cores of neutron stars may contain Hyperons (Lambda's in particular)

Hyperon puzzle: models suggest that the precense of hyperons make the star unstable

ΛΛ and Λn interactions poorly known (hypernuclei), but needed in modelling

Chrial effective field theory with Λ :

	BB force	3B force	4B force	
LO	XH	—	—	5 (+1) NN/YN (YY) short range parameters
NLO	ХМАМЦ	—		23(+5) NN/YN (YY) short range parameters
N ² LO	44	+++ +-X ×	—	A. Nogga

Λ 's in NS and the LHC

Sarti, QM22

 $\overline{p_a}$ $\overline{p_b}$ $\overline{p_b}$ $\overline{p_b}$ $\overline{p_a}$ $\overline{p_a}$ $\overline{p_a}$ $\overline{p_b}$

Correlation function

