Heavy-ion physics & extreme QCD — a (biased) experimental overview —

Alice Ohlson Lund University

Nordic Conference on Particle Physics 4 January 2023

High-temperature regime of QCD

- At high temperatures and densities, quarks and gluons are no longer confined into hadrons but behave quasi-freely
 - Quark-Gluon Plasma (QGP)

Spåtind 2023

Heavy-ion colliders

Relativistic Heavy Ion Collider

- 3.8 km circumference
- Au+Au collisions (a) $\sqrt{s_{NN}} = 7.7 200 \text{ GeV}$
- also p+p, p+Au, d+Au, ³He+Au, Cu+Cu, Cu+Au, U+U

Spåtind 2023

Large Hadron Collider

- 27 km circumference
- Pb+Pb collisions (a) $\sqrt{s_{NN}} = 2.76, 5 \text{ TeV}$
- also p+p, p+Pb, Xe+Xe

Heavy-ion detectors at RHIC

Spåtind 2023

Heavy-ion detectors at the LHC

Spåtind 2023

Run: 244918 Time: 2015-11-25 10:36:18 Colliding system: Pb-Pb Collision energy: 5.02 TeV

Observables in the detector: spatial and momentum distributions of stable final state particles (π , K, p, e, μ)

Geometry of a heavy-ion collision

• Centrality: amount of overlap of the colliding nuclei

Spåtind 2023

- Peripheral events are not rotationally-symmetric
- Anisotropic interaction region lacksquare

Anisotropic interaction region

• Stronger in-plane pressure

Spåtind 2023

Experimental heavy-ion physics — A. Ohlson

100 µs 200 µs 400 µs 600 μs 800 μs 1000 µs 1500 μs 2000 µs

Elliptic Flow in Ultracold Lithium

K.M. O'Hara et al., Science, 13 Dec 2002: 2179-2182

Anisotropic flow coefficients

- Particle distribution described by a Fourier cosine series $dN/d\phi \sim 1 + 2v_2\cos(2(\phi-\Psi_2))$
- $v_2 \rightarrow$ "elliptic flow"

Spåtind 2023

Anisotropic flow coefficients

- Particle distribution described by a Fourier cosine series \bullet $dN/d\phi \sim 1 + 2v_2\cos(2(\phi-\Psi_2))$
- $v_2 \rightarrow$ "elliptic flow"
- Measurements of v_2 are described very well by hydrodynamic models \rightarrow QGP behaves as a liquid!
- Viscosity (η/s) is near quantum lower bound \rightarrow QGP is the "perfect liquid"

Higher-order flow coefficients

• Due to event-by-event fluctuations of the positions of nucleons, overlap region is not perfectly symmetric \rightarrow development of triangular flow v_3 , quadrangular flow v_4 ,...

Higher-order flow coefficients

- Due to event-by-event fluctuations of the positions of nucleons, overlap region is not perfectly symmetric \rightarrow development of triangular flow v_3 , quadrangular flow v_4 ,...
- Higher harmonics are sensitive to hydrodynamic properties and dynamics of the QGP

H. Niemi, K.J. Eskola, R. Paatelainen, PRC 93 (2016) 024907, arXiv:1505.02677 [hep-ph]

Spåtind 2023

Bayesian analysis of particle yields, mean p_T , v_2 , v_3 , v_4 measured by ALICE

Spåtind 2023

Spåtind 2023

Experimental heavy-ion physics — A. Ohlson

ALICE

• Bayesian analysis of particle yields, mean p_T , v_2 , v_3 , v_4 measured by ALICE 10° \rightarrow extract shear and bulk viscosity $\eta/s(T)$, $\zeta/s(T)$ Flow cumulants Yields 🗕 🛉 Pb–Pb 2.76 TeV

Spåtind 2023

• Bayesian analysis of particle yields, mean p_T , v_2 , v_3 , v_4 measured by ALICE \rightarrow extract shear and bulk viscosity $\eta/s(T)$, $\zeta/s(T)$ 10° Flow cumulants Yields 🗕 🛉 Pb–Pb 2.76 Te\

Spåtind 2023

• Bayesian analysis of particle yields, mean p_T , v_2 , v_3 , v_4 measured by ALICE \rightarrow extract shear and bulk viscosity $\eta/s(T)$, $\zeta/s(T)$

- Similar analyses performed using
- Incorporating new observables [Phys. Rev. C 104 (2021) 054904, arXiv:2106.05019]
- flow harmonics

20

J. E. Bernhard, J. S. Moreland, S. A. Bass, Nature Physics 15 (2019) 1113 J. S. Moreland, J. E. Bernhard, S. A. Bass, Phys. Rev. C 101 (2020) 024911, arXiv:1808.02106 [nucl-th]

0

Spåtind 2023

40

Centrality (%)

60

Trajectum [PRL 126 (2021) 202301, arXiv:2010.15130]

and JETSCAPE [PRL 126 (2021) 242301, arXiv:2010.03928]

Especially correlations between multiple

 \rightarrow see talks by Emil Gorm Nielsen, You Zhou, Maxim Virta, Anna Önnerstad For more on bulk properties of the QGP, see talks by Debojit Sarkar, Wenya Wu

150

Experimental heavy-ion physics — A. Ohlson

80

Hard probes: jets

• Hard (high- Q^2) scatterings in the early stages of the collision produce back-to-back recoiling partons, which fragment into collimated clusters of hadrons

Spåtind 2023

• As they traverse the QGP, partons interact with the medium \rightarrow "jet quenching" \rightarrow gives insight into properties of the QGP and the interactions of a colored probe with a colored medium

Jets in heavy-ion collisions

Spåtind 2023

Jet quenching

Spåtind 2023

Hadron RAA

Spåtind 2023

Charged particle RAA

Experimental heavy-ion physics — A. Ohlson

Spåtind 2023

By comparing with a wide variety of models, extract the *jet transport coefficient*

$$\frac{\hat{q}}{T^3} \approx \begin{cases} 4.6 \pm 1.2 & \text{at RHIC,} \\ 3.7 \pm 1.4 & \text{at LHC,} \end{cases}$$

for a quark jet with E = 10 GeV

$$\begin{cases} 1.2 \pm 0.3 \\ 1.9 \pm 0.7 \end{cases} \text{ GeV}^2/\text{fm at} & \begin{array}{c} \text{T}{=}370 \text{ MeV} \\ \text{T}{=}470 \text{ MeV} \end{cases}$$

\rightarrow for more on jets, see talk by Johannes Hamre Isaksen

JET Collaboration, K.M. Burke et al., PRC 90 (2014) 014909, arXiv:1312.5003 [nucl-th]

Hard probes: heavy quarks

- Mass-dependent suppression of D (*c*-hadron) and non-prompt J/ψ (from *b*-hadrons) \rightarrow dead cone effect

Spåtind 2023

Melting and regeneration of J/ψ

Quarkonia dissociate at high temperatures \rightarrow suppression

PLB 178 (1986) 416

\rightarrow see talk by Ida Storehaug

Spåtind 2023

Melting and regeneration of J/ψ

- Quarkonia dissociate at high temperatures \rightarrow suppression
- More charm quarks available to form hadrons at LHC than at RHIC \rightarrow recombination

 \rightarrow evidence of deconfinement and thermalization

Spåtind 2023

Experimental heavy-ion physics — A. Ohlson

P. Braun-Munzinger and J. Stachel, Nature 448 (2007) 302

Melting of quarkonia: Y

- Upsilon production is strongly suppressed in Pb+Pb collisions
- Stronger suppression for higher states which are more weakly bound

Spåtind 2023

Identified particle spectra

Spåtind 2023

Experimental heavy-ion physics — A. Ohlson

5-10% x 2¹⁰

p + **p**

10

*р*_т (GeV/*c*)

10

Hadrochemistry at chemical freeze-out

Spåtind 2023

Hadrochemistry at chemical freeze-out

Experimental heavy-ion physics — A. Ohlson

Spåtind 2023

Statistical model of particle production

Spåtind 2023

• Calculation of particle yields in thermal equilibrium with a common chemical freeze-out temperature (T_{chem}) shows excellent agreement with the data over seven orders of magnitude

> <u>Pb-Pb √s_{NN} = 2.76 TeV:</u> ALICE, Nucl. Phys. A 971 (2018) 1, arXiv:1710.07531 [nucl-ex]

Kinematics at kinetic freeze-out

ALICE, submitted to EPJC, arXiv: 2101.03100 [nucl-ex]

- Fit shape of p_T spectrum \rightarrow probe final hadron kinematics at kinetic freeze-out
- Boltzmann-Gibbs Blast-Wave model: a simplified hydrodynamic model

Spåtind 2023

Experimental heavy-ion physics — A. Ohlson

ALI-PREL-156769

- Simultaneous fit to π , K, p spectra to obtain
 - radial expansion velocity β_T
 - kinetic freeze-out temperature T_{kin}
- More central (higher multiplicity) events have lower T_{kin} and higher expansion rate

... and back again

From large to small systems...

Xe-Xe 5.44 TeV

Pb-Pb 5.02 TeV

Collective behavior in small systems

• Flow-like (v_n) signals observed in high-multiplicity p+p and p+Pb collisions as well!

Spåtind 2023

Experimental heavy-ion physics — A. Ohlson

ALICE, PLB 719 (2013) 29, arXiv: 1212.2001 [nucl-ex]

Collective behavior in small systems

(d) CMS N \ge 110, 1.0GeV/c<p_<3.0GeV/c

• Flow-like (v_n) signals observed in high-multiplicity p+p and p+Pb collisions as well!

Spåtind 2023

Experimental heavy-ion physics — A. Ohlson

ALICE, PLB 719 (2013) 29, arXiv: 1212.2001 [nucl-ex]

Strangeness enhancement in small systems

- Enhancement of strange particle yields in heavy-ion collisions (compared to p+p) viewed as a signature of QGP formation
 - (Now understood as a suppression of strangeness in p+p collisions due to their small size)
- The smooth increase of strange particle yields (w.r.t. pions) as a function of multiplicity was observed from p+p to p+Pb to Pb+Pb!

ALICE, Nature Physics 13 (2017) 535, arXiv: 1606.07424 [nucl-ex]

Strangeness enhancement in small systems

- Enhancement of strange particle yields in heavy-ion collisions (compared to p+p) viewed as a signature of QGP formation
 - (Now understood as a suppression of strangeness in p+p _ collisions due to their small size)
- The smooth increase of strange particle yields (w.r.t. pions) as a function of multiplicity was observed from p+p to p+Pb to Pb+Pb!
- Is there a non-hydrodynamic explanation for these signatures? (Is there an alternative description of heavy-ion collisions?)
- Is there QGP in small systems? (Is our understanding of p+p collisions incomplete?)

ALICE, Nature Physics 13 (2017) 535, arXiv: 1606.07424 [nucl-ex]

Strangeness enhancement in small systems

- Enhancement of strange particle yields in heavy-ion collisions (compared to p+p) viewed as a signature of QGP formation
 - (Now understood as a suppression of strangeness in p+p collisions due to their small size)
- The smooth increase of strange particle yields (w.r.t. pions) as a fund How can our knowledge of heavy-ion collisions improve observed from p+p to our understanding of p+p physics, and vice versa?
- Is there a non-hydrodynamic explanation for these signatures? (Is there an alternative description of heavy-ion collisions?)
- Is there QGP in small systems? (Is our understanding of p+p collisions incomplete?)

Heavy-ion physics in Run 3 and beyond

- 10x increase in luminosity in Runs 3+4 will enable us to make precision measurements of
 - jets \rightarrow energy loss and modification
 - heavy-flavor hadrons \rightarrow hard probe interactions with the medium, hadronization
 - correlations and fluctuations \rightarrow explore the phase diagram
 - electromagnetic probes
 - and much more!

- Small systems: collectivity/energy loss in p+p, p+Pb, O+O Major detector upgrades in order to take high-luminosity heavy-ion data and expand experimental reach
- Goal: unified description of the QGP from the macroscopic level to the fundamentals of QCD at the microscopic level

CERN Yellow Reports: Monographs (2019) 1159, arXiv:1812.06772 [hep-ph]

Heavy-ion physics in Run 3 and beyond

- 10x increase in luminosity in Runs 3+4 will enable us to make precision measurements of
 - jets \rightarrow energy loss and modification
 - heavy-flavor hadrons \rightarrow hard probe interactions with the medium, hadronization
 - correlations and fluctuations \rightarrow explore the phase diagram
 - electromagnetic probes
 - and much more!

- Small systems: collectivity/energy loss in p+p, p+Pb, O+O Major detector upgrades in order to take high-luminosity heavy-ion data and expand experimental reach
- Goal: unified description of the QGP from the macroscopic level to the fundamentals of QCD at the microscopic level

CERN Yellow Reports: Monographs (2019) 1159, arXiv:1812.06772 [hep-ph]

Heavy-ion physics in Run 3 and beyond

- 10x increase in luminosity in Runs 3+4 will enable us to make precision measurements of
 - jets \rightarrow energy loss and modification
 - heavy-flavor hadrons \rightarrow hard probe interactions with the medium, hadronization
 - correlations and fluctuations \rightarrow explore the phase diagram
 - electromagnetic probes
 - and much more!

- Small systems: collectivity/energy loss in p+p, p+Pb, O+O Major detector upgrades in order to take high-luminosity heavy-ion data and expand experimental reach
- Goal: unified description of the QGP from the macroscopic level to the fundamentals of QCD at the microscopic level

CERN Yellow Reports: Monographs 7 (2019) 1159, arXiv:1812.06772 [hep-ph]

Strong suppression and modification of hard probes, jets and heavy-flavor

Strong suppression and modification of hard probes, jets and heavy-flavor

Anisotropic flow coefficients and strangeness enhancement in small systems

Strong suppression and modification of hard probes, jets and heavy-flavor

Anisotropic flow coefficients and strangeness enhancement in small systems

Upgrades for discoveries!

Run:244918 Timestamp:2015-11-25 11:25:36(UTC) System: Pb-Pb Energy: 5.02 TeV

CMS Experiment at LHC, CERN Data recorded: Wed Nov 25 12:21: Run/Event: 262548 / 14582169 Lumi section: 309

We are now in the precision era of studying extreme QCD!

heavy-ion collisions

Event 2598326 Run 168486 Wed, 25 Nov 2015 12:51:53

