

Theory and Interpretation of Multimessenger Astrophysics

Julia Tjus | 04.01.2023

Ruhr-Universität Bochum, Germany Chalmers Tekniska Högskola, Sweden

SPONSORED BY THE

Federal Ministry of Education and Research

Multimessenger astrophysics: combination of astrophysics with fundamental aspects of matter

Multimessenger astrophysics: combination of astrophysics with fundamental aspects of matter

Neutrino

Multimessenger astrophysics: combination of astrophysics with fundamental aspects of matter

Information available today to investigate origin

Direct: cosmic rays

- Hadrons: Spectral behavior (all-particle and chemical composition)
 MeV – ZeV
- Electrons: primary spectrum (local)
 MeV – 20 TeV
- Anisotropy level
 TeV 10 PeV, EeV

Indirect: e, v, γ , ...

- Positronspectrum/ fraction MeV - TeV
- Gammas: Sources, diffuse emission
 MeV – 10(0) TeV
- Neutrinos: first detection
 TeV – PeV

Multimessenger astrophysics: a puzzle from low to high-energy and including γ , ν , and GWs

Multimessenger astrophysics: a puzzle from low to high-energy and including γ , ν , and GWs

Particle Physics: Heavens and Earth

Part I Accelerator and Earth Atmosphere

Earth Atmosphere

Forward cross-section measurements at heavens and Earth

Forward cross-section measurements at heavens and Earth

Fixed target data at sub-TeV (LHCb only)

- p+(p,...,O,N,...) @ 0.11 TeV
- Pb+(p,...,O,N,...) @ 0.07 TeV
- O+O, <u>O+p</u> @ 0.08 TeV (in Run 3)

Forward cross-section measurements at heavens and Earth

10

2 4

6 8

-10

-4 -2 0

Fixed target data at sub-TeV (LHCb only)

- p+(p,...,O,N,...) @ 0.11 TeV
- Pb+(p,...,O,N,...) @ 0.07 TeV
- 0+0, 0+p @ 0.08 TeV (in Run 3)

Atmospheric muons and neutrinos

Fig: A. Fedynitch, JKB & Desiati, PRD (2012)

Atmospheric muons and neutrinos

6

Fig: A. Fedynitch, JKB & Desiati, PRD (2012)

Atmospheric muons and neutrinos

6

Fig: A. Fedynitch, JKB & Desiati, PRD (2012)

Fig: J. Albrecht et al., Review, Astroph. & Space Science (2022)

Cross section at the highest energies – comparison with Monte Carlo

- Auger measurements of cross section at $\sqrt{s} = 6 \cdot 10^4 \text{GeV}$
- Constrains validity of different interaction models
- Second constraint of physics of hadronic interactions at the highest energies
- Astroparticle physics measurements can be used to constrain models at the highest energies

P Abreu et al., Phys. Rev. Lett. (2012)

The Muon Puzzle

Excess of muons in the data with respect to the simulations ($\Delta z > 0$) Need to understand first interaction vertex in atmosphere to solve puzzle Affects accelerator data as well

Observables of air showers dependent on first interaction models

The Pierre Auger Collaboration, Phys. Rev. D 96, 122003 (2017)

Important to understand first interaction models to disentangle cosmicray composition (p to Fe) and this way to identify cosmic-ray sources

Observables of air showers dependent on first interaction models

Important to understand first interaction models to disentangle cosmicray composition (p to Fe) and this way to identify cosmic-ray sources

vN cross section at 10⁵ GeV with IceCube

Neutrino cross section measurements

DIS to probe inner structure of proton – IceCube contributes to constrain pdfs by constraining the neutrino cross section at the highest energies

Summary Atmosphere + Accelerator

Cross-section measurements start to constrain models at the highest energies & reveal problems (Auger/IceCube)

- Observables can be used to tune MC and to improve theory
- Observations might reveal BSM physics in the future

Part II Accelerator and Astrophysics

Interstellar medium (up to ~1e17eV) Galactic Cores, Jets, Clusters (up to ~1e20eV)

Interstellar medium (up to ~1e17eV)

- Supernova Remnants
- Pulsar Wind Nebulae
- Superbubbles
- Binary Systems
- Stellar Winds

Galactic Cores, Jets, Clusters (up to ~1e20eV)

Interstellar medium (up to ~1e17eV)

- Supernova Remnants
- Pulsar Wind Nebulae
- Superbubbles
- Binary Systems
- Stellar Winds

Galactic Cores, Jets, Clusters (up to ~1e20eV)

- Jets in active Galaxies
 Core of active Galaxy
- Gamma-ray bursts
- Galaxy Clusters

Interstellar medium (up to ~1e17eV)

- Supernova Remnants
- Pulsar Wind Nebulae
- Superbubbles
- Binary Systems
- Stellar Winds

Galactic Cores, Jets, Clusters (up to ~1e20eV)

Jets in active Galaxies
Core of active Galaxy

- Gamma-ray bursts
- Galaxy Clusters

Here: test of CRs from ISM and AGN cores/jets by multimessenger detection

Cosmic-ray secondaries from ISM: starburst galaxies

NGC1068

Fig: JKB, Multifrequency view of starburst galaxies, Vulcano Conference 2011

Cosmic-ray secondaries from ISM: The Milky Way

Fig: NASA & H.E.S.S. Galactic Plane Survey

Cosmic-ray secondaries from ISM: The Milky Way

- Diffuse emission from CRs relatively well-described (p, IC, brems)
- BUT:
 - Central region still mismatch (astrophysics VS Dark Matter)
 - Many details that are in need of explanation (Fermi Bubbles, GC PeVatron, CR Gradient, ...)
- Problem with Milky Way: sitting in the middle of the system makes observations (& interpretation) somewhat difficult

Fig: NASA & H.E.S.S. Galactic Plane Survey

Spiral galaxies – the starburst part

Eichmann & JBT, ApJ (2016)

Spiral galaxies – the starburst part

Eichmann & JBT, ApJ (2016)

Cosmic rays from AGN cores -The case of NGC1068

Multimessenger fit: combination of starburst + corona contribution

Murase, Kimora & Mészárosz, PRL 125:011101 (2020) See also further work by Kheirandish, Murase & Kimura, ApJ 922 (2021)

RAPP Center

Murase, Kimora & Mészárosz, PRL 125:011101 (2020) See also further work by Kheirandish, Murase & Kimura, ApJ 922 (2021)

NGC1068: Contribution from interactions with the disk Corona

Cosmic rays from Jets of active Galaxies

NGC4042, Credit: Hubble

Cosmic rays from Jets of active Galaxies

JBT et al, MDPI Physics (2022)

NGC4042, Credit: Hubble

Multimessenger emission with TXS0506+056

ΧΟΡΡ

Time-domain of AGN

Neutrinos arrive in gamma-minima? Possible if gas density extreme: photon absorption

Kun, Bartos, JBT, Biermann, Halzen, Mez[~] o ApJL (2021)

Charm-quark physics in astrophysics?

Precision measurements of hadronic interactions at the highest energies needed to understand particle fluxes from dense environment in the Universe

Charm-quark physics in astrophysics?

Precision measurements of hadronic interactions at the highest energies needed to understand particle fluxes from dense environment in the Universe

Critical density: $c \cdot \gamma \cdot \tau_{\pi^{\pm}} > \lambda_{mfp} = \frac{1}{\sigma \cdot \rho}$ $\Rightarrow \pi$ absorption

charm-flux revealed
 (as in Earth atmosphere)

Example PSK1502+106: a curved, precessing jet?

Britzen et al, MNRAS 503 (3): 3145 (2021)

PKS1502+106 – ν , γ , radio, polarization

 $^{-2}$ 0 Right Ascension (mas) Map center: RA: 05 09 25.964, Dec: +05 41 35.334 (2000.0) Contours %: -0.5 0.5 1 2 4 8 16 32 64 Beam FWHM: 0.942 x 0.406 (mas) at -0.996°

Clean I map. Array: BFHKLMNOPS

Jet I

core II ?

_1

Jet II

TXS0506+056 – a precessing jet?

Gergely & Biermann, ApJ (2009) deBrujin, Bartos, JBT, Biermann, ApJL (2020)

TXS0506+056 – a precessing jet?

Gergely & Biermann, ApJ (2009)

deBrujin, Bartos, JBT, Biermann, ApJL (2020)

JBT, Jaroschewski, Ghorbanietemad, Bartos, Kun, Biermann (ApJL, Dec 2022)

What if? – Gravitational Waves from TXS

JBT, Jaroschewski, Ghorbanietemad, Bartos, Kun, Biermann (ApJL, Dec 2022)

v/γ -GW-connection for more SMBBHs – a future perspective

Kun, ..., JBT, et al, ApJ (Dec 2022)

Summary Astro + Accelerator

Consistent picture: astrophysical neutrinos >> astrophysical γ-rays

- Requires environments of γ-ray absorption
 extreme densities
- Particle fluxes with short decay timescales become relevant
- Future opens up for particle physics with cosmic accelerators

Multimessenger astrophysics: a puzzle for physicists

Multimessenger astrophysics: a puzzle for physicists

SPONSORED BY THE

Thank you for listening – time for questions ©

Federal Ministry of Education and Research

Deutsche Forschungsgemeinschaft

Julia Tjus | 04.01.2023