Multi-messenger astronomy

Overview of experimental and observational aspects

David Berge (DESY & Humboldt-University Berlin) Spåtind 2023

DESY.

HELMHOLTZ

DESY. & HUB | Multi-messenger Astronomy | David Berge

Tanabashi et al (PDG, PRD 98, 2019) Page 2

Large Hadron Collider at Earth

DESY. & HUB | Multi-messenger Astronomy | David Berge

Cosmic Hadron Collider in the Universe?

DESY. & HUB | Multi-messenger Astronomy | David Berge

The same energy density in particles, magnetic fields, gas / plasma

Page 6

One main science driver of multi-messenger astronomy:

Where and how are cosmic rays accelerated?

Active Galactic Nuclei

... are particle accelerators!

M87, Hubble

DESY & Science Communication Lab

Shock waves following explosive events

... are particle accelerators!

https://www.desy.de/news/news/search/index_eng.html?openDirectAnchor=2249 DESY. & HUB | Multi-messenger Astronomy | David Berge

Extra-galactic gamma-ray burst following a supernova explosion of a massive star

DESY, Science Communication Lab https://www.desy.de/news/news_search/index_eng.html?openDirectAnchor=2080

Glossary AGN: Active Galactic Nucleus

Seyfert galaxy, blazar: types of AGN

SNR: Supernova Remnant

GRB: Gamma-ray Burst (short and long)

TDE: Tidal Disruption Event

NSBM: Neutron star binary merger

NGC: New General Catalogue

Page 14

Page 15

Cosmic production of γ , ν , GW

"Non-thermal" Production Processes: Cosmic Beam Dumps

$$\begin{array}{c} \text{Cosmic ray} \\ pp \\ p\gamma \\ p\gamma \\ target \end{array} \left\{ \begin{array}{c} \dots + \pi^+ \to \mu^+ + \nu_\mu \to e^+ + \nu_e + \bar{\nu}_\mu + \nu_\mu \\ \dots + \pi^- \to \mu^- + \bar{\nu}_\mu \to e^- + \bar{\nu}_e + \nu_\mu + \bar{\nu}_\mu \\ \dots + \pi^0 \to \gamma\gamma \end{array} \right.$$

"Non-thermal" Production Processes

$$\begin{array}{c} \text{Cosmic ray} \\ pp \\ p\gamma \\ p\gamma \\ target \end{array} \left\{ \begin{array}{c} \dots + \pi^+ \to \mu^+ + \nu_\mu \to e^+ + \nu_e + \bar{\nu}_\mu + \nu_\mu \\ \dots + \pi^- \to \mu^- + \bar{\nu}_\mu \to e^- + \bar{\nu}_e + \nu_\mu + \bar{\nu}_\mu \\ \dots + \pi^0 \to \gamma\gamma \end{array} \right.$$

Gamma-rays are not exclusively produced in hadronic processes

Neutrino measurements key to nailing down proton accelerators!

How to image the high-energy universe

10¹²

But also: solar neutrinos...

DESY. & HUB | Multi-messenger Astronomy | David Berge

Page 22

Gravitational Waves

Our Tools for MM Astronomy

Multi-Messenger Astronomy – History Quiz

DESY. & HUB | Multi-messenger Astronomy | David Berge

Page 29

Neutrinos from the Sun (Davis Jr, Homestake mine)!

Neutrinos from SN1987a, a supernova in the Large Magellanic Cloud, our cosmic neighbourhood. 12 neutrinos in 12s by Kamiokande, out of 10¹⁶ passing through the detector, and 10⁵⁸ emitted during the stellar collapse!

DESY. & HUB | Multi-messenger Astronomy | David Berge

orbital decay (change of periastron) due to emission

Hulse-Taylor binary, 59-ms pulsar orbits around

neutron star, pulses shifted by 3s every 7.75 hrs,

of GW's!

Science Highlights

All-sky Energy Flux Spectra

Gamma-ray sources

Overview HESS plane scan

DESY. & HUB | Multi-messenger Astronomy | David Berge

Fermi-LAT, 8 years, 5000 sources (2/3 blazars), ApJS 247, 2020

Page 34

Gamma-ray sources

Hinton & Ruiz-Velasco, TAUP 2019

The Extragalactic Gamma-ray Background

[Ajello+, ApJL, 2015)]

DESY. & HUB | Multi-messenger Astronomy | David Berge

What are the Neutrino sources?

- 1. Search for hotspots and probe bright gamma-ray sources ('stacking' analyses)
- 2. Look for EM counterparts of individual high-energy neutrinos of high signalness

Strategy 1: Search for neutrinos from pre-defined source list

- 110 sources based on **gamma-ray properties** and weighted with neutrino search sensitivity
 - 8 starburst galaxies detected by Fermi-LAT
 - **98** brightest Fermi-LAT **blazars** (above 1 GeV)
 - 12 galactic sources based on VHE gamma-ray measurements
- \rightarrow Discovery of NGC 1068
Neutrino hottest spot: NGC 1068

79 Neutrinos, 4.2 sigma post trials, the first Neutrino point source!

DESY. & HUB | Multi-messenger Astronomy | David Berge

Neutrino hottest spot: NGC 1068

IceCube, Science 378 (2022)

79 Neutrinos, 4.2 sigma post trials, the first Neutrino point source!

DESY. & HUB | Multi-messenger Astronomy | David Berge

Neutrino hottest spot: NGC 1068

Need to find ways to hide corresponding gamma-ray emission...

Stacking analysis of all 110 pre-defined sources

Fermi blazars < 10% of diffuse neutrinos

DESY. & HUB | Multi-messenger Astronomy | David Berge

Page 42

2. Strategy: look for Neutrino – gamma-ray transients

Blazar TXS 0506+056

PKS 0502--2 76.8° 76.4

MAGIC significance [o]

DESY. & HUB | Multi-messenger Astronomy | David Berge

IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Page 46 Kapteyn, Kanata, Kiso, Liverpool, Subaru, Swift, VERITAS, VLA, Science 2018

Blazar TXS 0506+056

- Signalness of 290 TeV neutrino: 56.5%
- Chance coincidence 'disfavoured' at 3 σ level
- This blazar among the 30 brightest gamma-ray blazars in the sky

Archival search revealed another Neutrino flare w/o gammas...

Challenge for models, need more of these!

DESY. & HUB | Multi-messenger Astronomy | David Berge

IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kapteyn, Kanata, Kiso, Liverpool, Subaru, Swift, VERITAS, VLA, Science 2018 Page 48

First two potential extrasolar Neutrino sources not dominant

IceCube, Science 378 (2022)

Summary of Stacking Limits

So far no dominant source class for diffuse neutrinos identified

F. Oikonomou PoS ICRC2021 (2022) 030, arXiv:2201.05623

Science highlight: explosives...

Why interesting?

- Up to 10⁵⁵ erg (10⁴⁸ Joule) in seconds to minutes released
 - 1 solar mass = 1.8 x 10⁵⁴ erg
- Potential sources of highest energy cosmic rays
- Potential sources of heavy elements
- Among the farthest known light sources (can use as beacon to measure cosmic light fields via absorption)
- Multi-messenger Question: Are GRBs accelerating hadrons?

DESY, Science Communication Lab

Short and long gamma-ray bursts

Short GRBs: prompt phase (few sec) + afterglow

Neutron-star merger event / ESO

Long GRBs: prompt phase (sec - min) + afterglow

Collapse of massive star / NSF

DESY. & HUB | Multi-messenger Astronomy | David Berge

Page 53

2704 BATSE Gamma-Ray Bursts

DESY. & HUB | Multi-messenger Astronomy | David Berge

Page 54

Short and long gamma-ray bursts

- Long GRBs
 - Cosmological distances
 - In star-forming galaxies
 - Some associated with SNe
 - \rightarrow collapse of massive stars
- Short GRBs
 - Smaller redshifts / less luminous
 - Not in star forming regions
 - → old compact objects, NS-NS or NS-BH mergers

Shahmoradi & Nemiroff (MNRAS, 2015)

DESY. & HUB | Multi-messenger Astronomy | David Berge

Long GRBs at TeV energies

... plus a very recent nearby beast (221009A), brightest ever in X-rays, LHAASO TeV measurement expected soon, https://en.wikipedia.org/wiki/GRB 221009A

DESY. & HUB | Multi-messenger Astronomy | David Berge

TeV emission from GRBs, implications

- Surprisingly large TeV energy fraction (50/50 for the January 2019 GRB)
- Leptonic emission (from timescales + X-ray correlation)
- · Models for high-energy emission mechanisms under debate

GRB 190114C, MAGIC Nature (2019)

DESY. & HUB | Multi-messenger Astronomy | David Berge

Page 58

IceCube GRB Neutrino Searches

Any neutrino measured coincident with a GRB?

- No correlation found
- Measured GRBs are not significantly contributing to the IceCube diffuse neutrino flux
- Constraining scenarios in which GRBs are the main sources of highest-energy cosmic rays during their prompt phase
 - Maybe they aren't UHECR sources
 - Maybe 'prompt phase' search to short
 - Maybe they are but protons produce no neutrinos at source (somewhat constrainable through EM signals)

IceCube (ApJ, 2017)

Neutron Star Merger Event GW170817

Short GRBs are Neutron Star mergers and produce 'kilonovae'

DESY. & HUB | Multi-messenger Astronomy | David Berge

Neutron Star Merger Event GW170817

Short GRBs are Neutron Star mergers and produce 'kilonovae' → synthesis of heavy elements!

DESY. & HUB | Multi-messenger Astronomy | David Berge

Credit: Drout et al, Science 2017

Page 61

Neutron Star Merger Cartoon

Prompt and afterglow emission

DESY. & HUB | Multi-messenger Astronomy | David Berge

64

H.E.S.S. observations

0.2 - 5 days and 124 - 272 days after event

Synchrotron Self Compton process TeV observations break degeneracy → probe magnetic field!

Page 65

Tidal Disruption Event

DESY. & HUB | Multi-messenger Astronomy | David Berge

PRL 2022, <u>https://physics.aps.org/articles/v15/77</u>, https://www.desy.de/news/news_search/index_eng.html?openDirectAnchor=2030

Evidence for neutrino emission

R. Stein et al., Nature Astronomy 2021, S. Reusch et al. PRL 2022, S. Van Velzen et al. arXiv:2111.09391

Distance: z = 0.05 (d = 230 Mpc), no gamma rays

Neutrino Production in TDEs

Hayasaki, Nature Astronomy 2021

Recurrent Nova RS Oph in TeV gamma rays

DESY. & HUB | Multi-messenger Astronomy | David Berge H. E. S. S. Collaboration et al., Science 376, 6588, 77-80, 2022

Recurrent Nova RS Oph in TeV gamma rays

DESY. & HUB | Multi-messenger Astronomy | David Berge H. E. S. S. Collaboration et al., Science 376, 6588, 77-80, 2022

Efficient particle acceleration

- Discovery of VHE gamma rays (> 100 GeV) in 2021
- Gamma ray spectral evolution with time points to cosmic hadron (not lepton) accelerator
- Particle acceleration at theoretical limit in astrophysical shocks, support for supernova remnant paradigm of cosmic rays

DESY. & HUB | Multi-messenger Astronomy | David Berge H. E. S. S. Collaboration et al., Science 376, 6588, 77-80, 2022

How to improve in future

Important future projects (secured / planned):

- **CTA**
- LSST
- ULTRASAT
- Einstein Probe (X-rays satellite)
- SVOM (GRB monitor)
- IceCube Gen-2
- Einstein Telescope
- LISA
- MeV GeV satellite (ASTROGAM, AMEGO-X)
- keV flagship satellite (Athena)
- ... and probably more that I am forgetting now

СТА

- Open gamma-ray observatory
 - Transition from particle physics style collaborations to open observatory...
- Two telescope locations:
 - 13 telescopes La Palma (CTAO North)
 - 58 telescopes Paranal, Chile (CTAO South)
- Headquarters Bologna, Science Data Management Center at DESY in Zeuthen

'good things take time'

... founding an ERIC is not a swift process!

CTA Performance

DESY. & HUB | Multi-messenger Astronomy | David Berge

Next Generation Neutrino Telescopes

>= 2025 for operation >= 2032...

Next Generation Neutrino Telescopes

New Instrument to identify Counterparts

DESY.

Neutron Star Merger Event GW170817

Short GRBs are Neutron Star mergers and produce 'kilonovae'

DESY. & HUB | Multi-messenger Astronomy | David Berge

Sebastian Gomez

Follow

This is what it looks like when astronomers use 20+ telescopes from all over the world to take ~1200 images of the same patch of the sky in search of a common goal. Unfortunately, no merging neutron stars were found #S190425z

Large field-of-view telescopes are key to finding these GRBs / kilonovae!

ULTRASAT – A Discovery Machine in the UV

The 'large field of view' revolution

DESY. & HUB | Multi-messenger Astronomy | David Berge

Page 81

ULTRASAT

Key Features

- Very large, 200 deg², field of view.
- High UV (230-290nm) sensitivity: 1.5 x 10⁻³ ph/cm² s (900s, 5σ)

Key Capabilities

- Monitor an unprecedentedly large volume of the Universe.
- Real-time alerts to ground/space-based telescopes (GEO orbit) to initiate world-wide follow-ups.
- Instantaneous >50% of the sky in <15 min for >3 hr.

Key Science

- Supernovae
- GW follow-up (NS-NS, NS-BH)
- GRB
- AGN
- Stars

SPIE 2021, https://arxiv.org/abs/2108.02521

ULTRASAT DESY Contribution: UV camera

Sensor main Specs.

Photosensitive surface	90x90 mm
Pixel size	9.5 µm
Operation waveband	230-290nm
Mean QE in Operation band	>60%
Operation temperature	200±5 °K
Dark current @ 200 °K	<0.03 e⁻/sec
Readout mode	Rolling shutter
Readout time	<25 sec
Readout noise @ High-gain	<3.5 e ⁻ /pixel
Electronic cross-Talk	<0.01%
Pixel sampling scheme	HDR capability
Low-gain Well capacity	140-155 Ke
High-gain Well capacity	16-21 Ke ⁻
Bits per Pixel – total (data only)	14 (13)

DESY. & HUB | Multi-messenger Astronomy | David Berge

Page 83

- A blooming field with a golden decade ahead of us thanks to new observatories coming online
- The origin of cosmic rays was a key driver of this field, and aspects of this question will remain with us for some time
- Time domain astronomy (aka real-time multi-messenger astronomy) is just opening up and is recognised as a key priority in Europe and the US

HELMHOLTZ