
Current Topics in Neutrino Physics 
Theory

Sandhya Choubey 

KTH Royal Institute of Technology
Stockholm, Sweden

Spåtind 2023 - Nordic Conference in Particle Physics 



Neutrinos are Ubiquitous

Borexino is similar to a 
"matrioska", dipped in 2.400 
tons of highly purified water. 
Inside it, a steel sphere 
contains 1000 tons of a 
hydrocarbon 
(pseudocumene) and within 
a smaller nylon sphere are 
300 tons of scintillating 
liquid

The photomultipliers, 
which are ultra-sensitive 
technological eyes, see and 
record the light flashes 
produced by the neutrinos

In the innermost sphere 
neutrinos interact with the 
scintillator liquid and 
produce small flashes of 
light. 
Borexino observes dozens 
of these signals every day
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BOREXINO SEES GEO-NEUTRINOS
Neutrinos and antineutrinos
are particles with no electric charge 
and a very small mass that do not 
interact with other constituents
of matter. They are the only particles 
able to pass undisturbed through
the rock and reach the place where 
they are studied
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Borexino is an international project led by Italian 
researchers; the project involves around 100 scholars 
from six countries. For the first time anywhere, 

Borexino has observed geo-neutrinos, particles that 
are emitted by the spontaneous decay of radioactive 
nuclei located within the Earth. 

Many radioactive 
decays emit 

anti-neutrinos, that is, 
the anti-particles of 

neutrinos.
Those produced within 
the Earth are known as 
"geo-neutrinos", whose 

study constitutes the 
only method for 

understanding what 
happens deep within 

our planet.

THE EARTH'S INTERIOR 

GEO-NEUTRINOS 

An estimated 31-44 thousands of billions of Watts. 
Part of this energy derives from the heat 

emitted by the spontaneous decay of 
Uranium, Thorium, and 

Potassium-40 present in the 
planet's inner strata.
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Standard Model of  Elementary 
Particles

No right-handed neutrinos

B ⇥ Le ⇥ Lµ ⇥ L⌧

Neutrinos were postulated
to be massless in the SM
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Neutrino Flavor Oscillations
Solar neutrinos (H

omestake,SAGE

Gall
ex,SK,SNO,Borexino)

Atm
ospheric neutrinos (S
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Reactor neutrinos

Daya Bay, R
eno, D

ouble Chooz

Accelerator neutrinos (T
2K)

Reactor Neutrinos

KamLAND

Accelerator neutrinos (N
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Same guy, two identities 
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Mass squared difference
Mixing angle

Δm2
32 = m2

3 − m2
2
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Three Flavor Oscillations in Vacuum

Flavor Eigenstates != Mass Eigenstates
|να〉 =

∑

i Uαi|νi〉

U =







c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13







Pβγ(L) = δβγ −4
∑

j>1

Re
(

UβiU
%
γiU

%
βjUγj

) sin2 ∆m2
ijL

4E

±2
∑

j>1

Im
(

UβiU
%
γiU

%
βjUγj

) sin ∆m2
ijL

2E
.

SANDHYA CHOUBEY ATMOSPHERIC NEUTRINOS:WHAT MORE CAN WE LEARN DAE 2006, 12.12.06 – p.16/53

3 mixing angles

1 CP Phase

2 mass-squared diff
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Oscillation Channels
For  we get the “survival probability” => disappearance channel (say, )

For , we get “transition probability” => “appearance channel” (say, )

Oscillation experiments use either one or both to give information about 
neutrino oscillation parameters - 2 mass squared differences, 3 mixing angles, and 
the CP phase 

We have data from solar neutrino experiments ( ), LBL reactor experiment 
( ), atmospheric neutrino experiments ( ), SBL reactor experiments ( ), 
accelerator-base experiments (  and )

β = γ Pμμ

β ≠ γ Pμe

Pee
Pee Pμμ Pee

Pμμ Pμe

Δm2
21 and sin2 θ12

|Δm2
31 | and sin2 2θ23

|Δm2
31 | and sin2 2θ13

|Δm2
31 | , θ23 and θ13

“
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Current Status of Neutrino Oscillation Parameters NuFit5.1 2021
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Current Status of Neutrino Oscillation Parameters

Neutrino masses are tiny

Neutrino mixing angles 
are different from 

Quark mixing angles

Is this expected?

θ13 = small
θ23 ∼ maximal

θ12 ∼ large

NuFit5.1 2021
“The Knowns”
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Current Status of Neutrino Oscillation Parameters
“The Unknowns”

Neutrino Mass Ordering ? 

Octant of theta23 ? 

CP Violation ? 

The next task is to answer these questions

NuFit5.1 2021



Sandhya Choubey                                               Spåtind 2023                                                             05.01.2023

Neutrino Mass Ordering

Which is the 
right way?!

Sign of            is known

Sign of            is unknown

<latexit sha1_base64="iO7pkd5/0Cysf5oNzW+DKSuY65M=">AAAB+HicbVBNSwMxEM36WetHVz16CRbBU9ktih4L9uCxgv2Adl2yadqGJtklmRXq0l/ixYMiXv0p3vw3pu0etPXBwOO9GWbmRYngBjzv21lb39jc2i7sFHf39g9K7uFRy8SppqxJYxHrTkQME1yxJnAQrJNoRmQkWDsa38z89iPThsfqHiYJCyQZKj7glICVQrfUqzMBBMswq/rTh2rolr2KNwdeJX5OyihHI3S/ev2YppIpoIIY0/W9BIKMaOBUsGmxlxqWEDomQ9a1VBHJTJDND5/iM6v08SDWthTgufp7IiPSmImMbKckMDLL3kz8z+umMLgOMq6SFJiii0WDVGCI8SwF3OeaURATSwjV3N6K6YhoQsFmVbQh+Msvr5JWteJfVry7i3KtnsdRQCfoFJ0jH12hGrpFDdREFKXoGb2iN+fJeXHenY9F65qTzxyjP3A+fwCUzpJk</latexit>

�m2
21
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�m2
31
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What depends on sign of               

Neutrino oscillation probabilities could depend on the sign of 

However, this is not an effective way of determining the sign of             due to 
the presence of  “degeneracies”

<latexit sha1_base64="rgFeTaq2eeO9h7JUXTqHShYlXyQ=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEInkpSFT0W9OCxgv2QNobNdtIu3WzC7kaoob/EiwdFvPpTvPlv3LY5aOuDgcd7M8zMCxLOlHacb6uwsrq2vlHcLG1t7+yW7b39lopTSaFJYx7LTkAUcCagqZnm0EkkkCjg0A5GV1O//QhSsVjc6XECXkQGgoWMEm0k3y73roFrgiM/O3UnDzXfrjhVZwa8TNycVFCOhm9/9foxTSMQmnKiVNd1Eu1lRGpGOUxKvVRBQuiIDKBrqCARKC+bHT7Bx0bp4zCWpoTGM/X3REYipcZRYDojoodq0ZuK/3ndVIeXXsZEkmoQdL4oTDnWMZ6mgPtMAtV8bAihkplbMR0SSag2WZVMCO7iy8ukVau651Xn9qxSv8/jKKJDdIROkIsuUB3doAZqIopS9Ixe0Zv1ZL1Y79bHvLVg5TMH6A+szx+cp5J6</latexit>
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252 NEUTRINO OSCILLATIONS IN VACUUM

relation in eqn (7.28), we obtain

∑

k

|Uαk|2 |Uβk|2 = δαβ − 2
∑

k>j

"e
[
U∗αk Uβk Uαj U∗βj

]
, (7.36)

which allows one to write the oscillation probability as

Pνα→νβ
(L, E) = δαβ − 2

∑

k>j

"e
[
U∗αk Uβk Uαj U∗βj

]
[

1 − cos

(
∆m2

kjL

2E

)]

+ 2
∑

k>j

#m
[
U∗αk Uβk Uαj U∗βj

]
sin

(
∆m2

kjL

2E

)

, (7.37)

or in the form

Pνα→νβ
(L, E) = δαβ − 4

∑

k>j

"e
[
U∗αk Uβk Uαj U∗βj

]
sin2

(
∆m2

kjL

4E

)

+ 2
∑

k>j

#m
[
U∗αk Uβk Uαj U∗βj

]
sin

(
∆m2

kjL

2E

)

. (7.38)

The oscillation probabilities of the channels with α $= β are usually called transition
probabilities, whereas the oscillation probabilities of the channels with α = β are
usually called survival probabilities. Since, in the case of the survival probabilities,
the quartic products in eqn (7.25) are real and equal to |Uαk|2|Uαj|2, the survival
probabilities can be written in the simple form

Pνα→να(L, E) = 1 − 4
∑

k>j

|Uαk|2 |Uαj |2 sin2

(
∆m2

kjL

4E

)

. (7.39)

It is interesting to see for which values of |Uαk|2 and |Uβk|2 with α $= β, the
average transition probability in eqn (7.33) has its maximum. Since the values of
|Uαk|2 and |Uβk|2 are subject to the unitarity constraints

∑

k

|Uαk|2 = 1 and
∑

k

|Uβk|2 = 1 , (7.40)

we can use the method of the Lagrange multipliers and calculate the stationary
point of

f(|Uαk|2, |Uβk|2) =
∑

k

|Uαk|2 |Uβk|2 − a

(

1 −
∑

k

|Uαk|2
)

− b

(

1 −
∑

k

|Uβk|2
)

,

(7.41)
where a and b are the Lagrange multipliers. The stationary point is given by

0 =
df

d|Uαk|2
= |Uβk|2 + a , 0 =

df

d|Uβk|2
= |Uαk|2 + b . (7.42)
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Matter Effects

NEUTRINO–ELECTRON INTERACTIONS 137

W

νe e−

e− νe

+ Z

νe νe

e− e−

(a) (b)

Fig. 5.1. The two tree-level Feynman diagrams for the elastic scattering process
νe + e− → νe + e−: charged current (a) and neutral current (b).
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e− ν̄e

+ Z

ν̄e ν̄e

e− e−

(a) (b)

Fig. 5.2. The two tree-level Feynman diagrams for the elastic scattering process
ν̄e + e− → ν̄e + e−: charged current (a) and neutral current (b).

low-energy Lagrangian for the elastic scattering processes in eqns (5.6) and (5.7) is
given by

Leff(
(−)
νee
− →(−)

νee
−) = −GF√

2

{[
νe γ

ρ
(
1 − γ5

)
e
] [

e γρ

(
1 − γ5

)
νe

]

+
[
νe γ

ρ
(
1 − γ5

)
νe

] [
e γρ

(
gl

V − gl
Aγ

5
)
e
]}

, (5.9)

with the coefficients gl
V and gl

A given in Table 3.6 (page 78). The first term on
the right-hand side is the charged-current contribution. The second term is the
neutral-current contribution. The charged-current contribution can be rearranged
with the Fierz transformation in eqn (2.508), leading to an expression which has the
same form as the neutral-current contribution. This allows us to write the effective
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2GFNe

This effective potential modifies the neutrino 
mass and mixing in matter
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p
2GFNeE for antineutrinos

Normal ordering       matter effects for neutrinos
Inverted ordering       matter effects for antineutrinos
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Mass Ordering
Why do we need to know the mass ordering?

Why have the current experiments not been able to measure this?

How will the future experiments determine it?

Figure 4. 1� and 2� marginalised contours for H0 vs.
P

m⌫ for TT+lowP, TT+lowP+BAO and
TT+lowP+PAN datasets in ⇤CDM +

P
m⌫ model, showing the degeneracy breaking effect of BAO

and PAN datasets separately. Evidently the BAO data is more effective in breaking the degeneracy
between the two parameters.

Figure 5. Comparison of 1-D marginalized posterior distributions for
P

m⌫ for various data
combinations in ⇤CDM +

P
m⌫ , with ⌧ and H0 priors. The plots are normalized in the sense that

area under the curve is same for all curves.

P
m⌫ < 0.124 eV and ⌧ = 0.060+0.08

�0.09 for TTTEEE+BAO+⌧0p055. We emphasize here again
that this use of the prior ⌧0p055 is well motivated in the sense that, as Planck Collaboration
[54] has mentioned in their paper, (1) it is the most accurate bound we currently have on
⌧ ; (2) such a small value of ⌧ also fully agrees with other astrophysical measurements of
reionization from high redshift sources. For ⇤CDM +

P
m⌫ , our tightest bound (except

– 12 –

Neutrinoless D
ouble  

Beta D
ecay

Model B
uild

ing

Cosmology

Have not been able to see  driven matter effects with statistical significanceΔm2
31

 driven matter effects will be observed at LBL experiment DUNEΔm2
31

 driven matter effects will be observed at atm experiments like IceCube, ORCA, HK, INO….Δm2
31

 and  interference effects will be observed at JUNOΔm2
31 Δm2

21

Dirac or Majorana
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Octant of  theta23
Why do we need to know the octant of theta23?

Why have the current experiments not been able to measure this?

How will the future experiments determine it?

Model B
uild

ing How much matter
effects in MO 
experiments

Affects Osc
Probabilities

Sensitivity mostly coming from experiments sensitive to  which depends on Pμμ sin2 2θ23

Long baseline experiments such as DUNE and T2HK will measure the octant via a combo
of   and Pμe pμμ

θ23 π/4
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CP Violation 
Why bother?

Important parameter in the neutrino mixing matrix

Key player in model of neutrino mass - pointer at the correct BSM theory

Pointer to leptogenesis

CPV in nu osc

Seesaw Models
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CP Violation
If we observe a difference between flavor oscillations of neutrinos and 
antineutrino           CP violation

 CP dependence in neutrino oscillations comes from the phase       in the 
neutrino mixing matrix … this phase is mostly referred to as the “Dirac CP 
phase”

U =

0

@
1 0 0
0 c23 s23
0 �s23 c23

1

A

0

@
c13 0 s13e�i�

0 1 0
�s13e�i� 0 c13

1

A

0

@
c12 s12 0
�s12 c12 0
0 0 1

1

A

0

@
ei↵1/2 0 0

0 ei↵2/2 0
0 0 1

1

A

Atmospheric
Accelerator

Reactor
Accelerator

Solar
Reactor

Neutrinoless
double beta dk

<latexit sha1_base64="3D/yaoMlWSJK/lPjQ/xCFdT2Fd4=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSSi6LHQgx4r2A9oQ9lsNu3SzW7YnQgl9Gd48aCIV3+NN/+N2zYHrT4YeLw3w8y8MBXcoOd9OaW19Y3NrfJ2ZWd3b/+genjUMSrTlLWpEkr3QmKY4JK1kaNgvVQzkoSCdcNJc+53H5k2XMkHnKYsSMhI8phTglbqDyImkAzzZms2rNa8ureA+5f4BalBgdaw+jmIFM0SJpEKYkzf91IMcqKRU8FmlUFmWErohIxY31JJEmaCfHHyzD2zSuTGStuS6C7UnxM5SYyZJqHtTAiOzao3F//z+hnGN0HOZZohk3S5KM6Ei8qd/+9GXDOKYmoJoZrbW106JppQtClVbAj+6st/Seei7l/VvfvLWuO2iKMMJ3AK5+DDNTTgDlrQBgoKnuAFXh10np03533ZWnKKmWP4BefjG0O+kUE=</latexit>

�CP
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CP Violation
The best method to see CP violation is to measure the oscillation probability Three Flavor Effects in νµ ! νe  oscillation probability  

7/42 

θ13 Driven    

CP odd    

CP even    

Solar Term    

                          Cervera etal., hep-ph/0002108 
                            Freund etal., hep-ph/0105071  
See also, Agarwalla etal., arXiv:1302.6773 [hep-ph]    

0.09 

0.009 

0.0009 

0.03 0.3 

changes sign with sgn(         ) 
   key to resolve hierarchy!  

 changes sign with polarity 
 causes fake CP asymmetry!  

Resolves 
  octant    

This channel suffers from: (Hierarchy – δCP) & (Octant – δCP)  degeneracy! How can we break them? 
  S. K. Agarwalla, PHENO1@IISERM, IISER, Mohali, India, 6th April, 2016 !
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Neutrino Mass (Dirac)

Add to the SM         which can give a Yukawa term  ⌫R

L⌫
Y = �Y  ̄L⌫R�̃+ h.c. (�̃ = i⌧2�

⇤)

After spontaneous symmetry breaking we get a Dirac mass 
term for the neutrinos

L⌫
Mass = ⌫̄LMD⌫R + h.c.

�

Dirac Neutrinos

ψ̄L = (ν̄L ēL)

Conserves lepton numberMD = YvSM (Y ∼ 10−12)
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We wish to explain the smallness of neutrino masses

We wish to explain also the peculiarity of the mixing angles

Smallness of neutrino masses can be explained naturally if the masses were 
generated either via - 

Higher loops - radiative neutrino mass models

Higher dimensional operators - seesaw models

The mixing pattern could come from some symmetry related to flavours 

We also wish to relate nu masses to baryogengesis and dark matter
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Neutrino Mass (Majorana)
Allow for lepton number violation in your effective theory 

νe

ντ

νe

νµ

νµ

νe

ντ

νe

νµ

νµ

νe

ντ

νe

νµ

νµ

Neutrino Masses: Beyond the Standard Model

−LY
ν = C5

ν
1

Λ
LLHH + h.c.

⇒ mν =
C5

ν v2

Λ

C5
ν ∼ 1 mν ∼ 0.1 Λ ∼ 1015

SANDHYA CHOUBEY NEUTRINO PHYSICS:THEORETICAL STATUS WIN’09, 14.09.09 – p.19/43

lepton number broken by 2 units
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νe

ντ

νe

νµ

νµ

νe

ντ

νe

νµ

νµ

νe

ντ

νe

νµ

νµ

The Seesaw Mechanism

⇒

SANDHYA CHOUBEY NEUTRINO PHYSICS:THEORETICAL STATUS WIN’09, 14.09.09 – p.20/43

So the aim is to introduce (a) 
new heavy particle(s) and 
write down a UV complete
theory

The terms in this extended
theory need to be invariant
under the SM gauge group 
and any added gauge groups

The SM gauge group can also
also be extended in these 
BSM models

Go BSM
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νe

ντ

νe

νµ

νµ

νe

ντ

νe

νµ

νµ

νe

ντ

νe

νµ

νµ

The Seesaw Mechanism

L H 2 ⊗ 2 = 3 ⊕ 1

L H

L L

L H

SANDHYA CHOUBEY NEUTRINO PHYSICS:THEORETICAL STATUS WIN’09, 14.09.09 – p.20/43
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νe

ντ

νe

νµ

νµ

νe

ντ

νe

νµ

νµ

νe

ντ

νe

νµ

νµ

Type I Seesaw

NR ∼ (1, 1, 0)

−LY = YνL̄H̃NR +
1

2
MNN c

RNR + h.c.

NR

L

H

YνY †
ν

H

L

Mν =

(

0 vYν

vYν MR

)

mν = −v2YνM−1
N Y T

ν

16

MN ∼ 1015

SANDHYA CHOUBEY NEUTRINO PHYSICS:THEORETICAL STATUS WIN’09, 14.09.09 – p.21/43
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νe

ντ

νe

νµ

νµ

νe

ντ

νe

νµ

νµ

νe

ντ

νe

νµ

νµ

Type III Seesaw

ΣR ∼ (1, 3, 0)

−LY = YΣL̄H̃ΣR +
1

2
MΣTr(Σc

RΣR) + h.c.

ΣR

L

H

YΣY †
Σ

H

L

Σ =

(

Σ0/
√

2 Σ+

Σ− −Σ0/
√

2

)

mν = −v2YΣM−1
Σ Y T

Σ

SANDHYA CHOUBEY NEUTRINO PHYSICS:THEORETICAL STATUS WIN’09, 14.09.09 – p.23/43

Foot, Lew, He, Joshi; Ma; Ma, Roy;T.H., Lin,
Notari, Papucci, Strumia; Bajc, Nemevsek,
Senjanovic; Dorsner, Fileviez-Perez;....

Couples to the W boson => strong limits
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νe

ντ

νe

νµ

νµ

νe

ντ

νe

νµ

νµ

νe

ντ

νe

νµ

νµ

Type II Seesaw

∆ ∼ (1, 3, 1)

−LII = Y∆LT C−1iσ2∆L + M2
∆Tr(∆†∆) + µHT iσ2∆

†H + ....

H

L

H

L

∆

µ

Y∆

∆ =

(

δ+/
√

2 δ++

δ0 −δ+/
√

2

)

mν = Y∆
µ v2

M2
∆

∆ v∆

SANDHYA CHOUBEY NEUTRINO PHYSICS:THEORETICAL STATUS WIN’09, 14.09.09 – p.22/43

Couples to the W boson => strong limits
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Neutrino Masses 
+ 

Baryon Asymmetry 
+  

Dark Matter
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SEESAW MECHANISM          LEPTOGENESIS 

Fukugita and Yanagida, 1986

Heavy RH neutrinos
in Type I seesaw

CP violating out of equilibrium 
decays of RH neutrinos 

Leptogenesis

 CP asymmetry   Lepton asymmetry   Baryon asymmetry  

CPV

Observing CP violation in 
neutrino expts crucial Majorana neutrinos crucial

CP asymmetry: ✏ ⌘ ��� �̄

�+ �̄

AND
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RH Neutrinos as Dark Matter (an example)       
matter candidates. The complete fermionic and scalar particle content of the model and their

corresponding charges under the di↵erent symmetry groups are shown in Tables I and II:

Gauge

Group

SU(2)L

U(1)Y

Z2

Baryon Fields

Qi

L
= (ui

L
, di

L
)T ui

R
di
R

2 1 1

1/6 2/3 �1/3

+ + +

Lepton Fields

Li

L
= (⌫i

L
, ei

L
)T ei

R
N i

R

2 1 1

�1/2 �1 0

+ + �

Scalar Fields

�h �H ⌘

2 1 2

1/2 0 1/2

+ + �

Table I: Particle contents and their corresponding charges under SM gauge group and discrete group

Z2.

Gauge

Group

U(1)
Lµ�L⌧

Baryonic Fields

(Qi

L
, ui

R
, di

R
)

0

Lepton Fields

(Le

L
, eR, N e

R
) (Lµ

L
, µR, N

µ

R
) (L⌧

L
, ⌧R, N ⌧

R
)

0 1 �1

Scalar Fields

�h �H ⌘

0 1 0

Table II: Particle contents and their corresponding charges under U(1)
Lµ�L⌧

.

The complete Lagrangian L for the present model is as follows,

L = LSM + LN + (Dµ�H)
†(Dµ

�H) + (Dµ⌘)
†(Dµ

⌘) +
X

j=µ, ⌧

Q
j
L̄j�⇢LjZ

⇢

µ⌧

�
1

4
Fµ⌧ ⇢�

Fµ⌧

⇢�
� V (�h,�H , ⌘) , (1)

where �h and ⌘ are two SU(2)L doublets while �H is a scalar singlet. Moreover, Qj = 1(�1) for

j = µ(⌧) where Lj = (⌫j j)T . Here, one of the scalar doublets namely ⌘ which is odd under

Z2 symmetry, does not have any Yukawa interaction involving only SM fermions and acts like

an inert doublet. For the same symmetry reason it does not have any VEV. The field strength

tensor for the extra neutral gauge field Zµ⌧ corresponding to gauge group U(1)
Lµ�L⌧

is denoted

by Fµ⌧ . In principle we should include a mixing term between the SM neutral gauge boson Z and

the new neutral gauge boson Zµ⌧ . The experimental bound restricts this mixing to be < 10�3

br the LEP II [65, 66]. In this work we assume no mixing between the neutral gauge bosons

of SM and U(1)Lµ�L⌧ . Indeed, if such mixing is generated at the loop level, we expect it to be

4

matter candidates. The complete fermionic and scalar particle content of the model and their

corresponding charges under the di↵erent symmetry groups are shown in Tables I and II:

Gauge

Group

SU(2)L

U(1)Y

Z2

Baryon Fields
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L
= (ui

L
, di

L
)T ui

R
di
R

2 1 1

1/6 2/3 �1/3

+ + +

Lepton Fields
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L
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L
, ei

L
)T ei

R
N i

R

2 1 1

�1/2 �1 0

+ + �

Scalar Fields

�h �H ⌘
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1/2 0 1/2
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Table I: Particle contents and their corresponding charges under SM gauge group and discrete group

Z2.

Gauge

Group

U(1)
Lµ�L⌧

Baryonic Fields

(Qi

L
, ui

R
, di

R
)

0

Lepton Fields

(Le

L
, eR, N e

R
) (Lµ

L
, µR, N

µ

R
) (L⌧

L
, ⌧R, N ⌧

R
)

0 1 �1

Scalar Fields

�h �H ⌘

0 1 0

Table II: Particle contents and their corresponding charges under U(1)
Lµ�L⌧

.

The complete Lagrangian L for the present model is as follows,

L = LSM + LN + (Dµ�H)
†(Dµ

�H) + (Dµ⌘)
†(Dµ

⌘) +
X

j=µ, ⌧

Q
j
L̄j�⇢LjZ

⇢

µ⌧

�
1

4
Fµ⌧ ⇢�

Fµ⌧

⇢�
� V (�h,�H , ⌘) , (1)

where �h and ⌘ are two SU(2)L doublets while �H is a scalar singlet. Moreover, Qj = 1(�1) for

j = µ(⌧) where Lj = (⌫j j)T . Here, one of the scalar doublets namely ⌘ which is odd under

Z2 symmetry, does not have any Yukawa interaction involving only SM fermions and acts like

an inert doublet. For the same symmetry reason it does not have any VEV. The field strength

tensor for the extra neutral gauge field Zµ⌧ corresponding to gauge group U(1)
Lµ�L⌧

is denoted

by Fµ⌧ . In principle we should include a mixing term between the SM neutral gauge boson Z and

the new neutral gauge boson Zµ⌧ . The experimental bound restricts this mixing to be < 10�3

br the LEP II [65, 66]. In this work we assume no mixing between the neutral gauge bosons

of SM and U(1)Lµ�L⌧ . Indeed, if such mixing is generated at the loop level, we expect it to be

4

new particles

inert doublet

Biswas, SC, Covi, Khan JCAP 1802 (2018)

Leads to mu-tau symmetry => maximal  and zero θ23 θ13
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matter candidates. The complete fermionic and scalar particle content of the model and their

corresponding charges under the di↵erent symmetry groups are shown in Tables I and II:
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Table I: Particle contents and their corresponding charges under SM gauge group and discrete group

Z2.
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Table II: Particle contents and their corresponding charges under U(1)
Lµ�L⌧

.

The complete Lagrangian L for the present model is as follows,

L = LSM + LN + (Dµ�H)
†(Dµ

�H) + (Dµ⌘)
†(Dµ

⌘) +
X

j=µ, ⌧

Q
j
L̄j�⇢LjZ

⇢

µ⌧
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4
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Fµ⌧
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� V (�h,�H , ⌘) , (1)

where �h and ⌘ are two SU(2)L doublets while �H is a scalar singlet. Moreover, Qj = 1(�1) for

j = µ(⌧) where Lj = (⌫j j)T . Here, one of the scalar doublets namely ⌘ which is odd under

Z2 symmetry, does not have any Yukawa interaction involving only SM fermions and acts like

an inert doublet. For the same symmetry reason it does not have any VEV. The field strength

tensor for the extra neutral gauge field Zµ⌧ corresponding to gauge group U(1)
Lµ�L⌧

is denoted

by Fµ⌧ . In principle we should include a mixing term between the SM neutral gauge boson Z and

the new neutral gauge boson Zµ⌧ . The experimental bound restricts this mixing to be < 10�3

br the LEP II [65, 66]. In this work we assume no mixing between the neutral gauge bosons

of SM and U(1)Lµ�L⌧ . Indeed, if such mixing is generated at the loop level, we expect it to be

4

suppressed not only by loop factors, but also by the gauge coupling gµ⌧
1 rendering it negligible

in our discussion. The Lagrangian for the three RH neutrinos LN after obeying all the symmetry

has the following form,

LN =
X

i=e, µ, ⌧

i

2
N̄i�

µ
DµNi �

1

2
Mee N̄

c
e
Ne �

1

2
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After spontaneous breaking of U(1)
Lµ�L⌧
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There is mixing between the neutral components of �h and �H , and the o↵ diagonal elements of

the mass matrix are proportional to the parameter �13. After diagonalising the mass matrix one

obtains two physical scalar states h1 and h2. Masses of h1, h2 and mixing angle ↵ are given by
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The lighter Higgs state h1, for small mixing angle ↵ and vµ⌧ � v, behaves as the Standard Model

Higgs observed at the LHC [67, 68] and therefore we will take its mass to be 125.5 GeV. From the

1 In this work, to maintain the nonthermal nature of our DM candidates we consider gµ⌧ ⇠ 10�11 (see Section

V).
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Lµ�L⌧
breaking. In the limit that

U(1)
Lµ�L⌧

is unbroken, the RH neutrino mass matrix is given by

MR =

0

BBBBB@

Mee 0 0

0 0 Mµ⌧ e
i⇠

0 Mµ⌧ e
i⇠ 0

1

CCCCCA
. (14)

Eigenvalues of Eq. (14) are
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giving very naturally two degenerate RH neutrinos with opposite parity. The U(1)
Lµ�L⌧

breaking

terms in Eq. (13) brings corrections to the RH neutrino mass spectrum, breaking the degeneracy

between N2 and N3. The mass splitting between them is given at first order for Mee � Mµ⌧ by
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Hence, the mass splitting between N2 and N3 depends on the U(1)
Lµ�L⌧

breaking VEV vµ⌧ and

the Yukawa couplings heµ and he⌧ . In what follows, we will see that vµ⌧ will be determined by

the choice of the Zµ⌧ gauge boson. However, the Yukawa couplings heµ and he⌧ can be suitably

adjusted to yield a mass splitting of 3.5 keV, needed to explain the 3.5 keV X-ray line from

N2 ! N3� decay.

Despite having the RH neutrinos in this model, the masses for light neutrinos cannot be

generated by the Type-I seesaw mechanism since the normal Yukawa term involving the RH

neutrinos, lepton doublets and the standard model Higgs �h is forbidden by the Z2 symmetry.

The other Yukawa term between the RH neutrinos, lepton doublets and inert doublet ⌘ is allowed,

but ⌘ does not take any VEV. Hence, there is no mass term for the light neutrinos at the tree-

level. However, masses for the light neutrinos gets generated radiatively at the one-loop level [64]

through the diagram shown in Fig. 1, giving the following mass matrix for the light neutrinos
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where Mk is the mass of kth RH neutrino while M⌘
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is the mass of ⌘0
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. The quantities

yji = hjUji, where hj are the Yukawa couplings in the last term of Eq. (2) and Uji are the
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There is mixing between the neutral components of �h and �H , and the o↵ diagonal elements of

the mass matrix are proportional to the parameter �13. After diagonalising the mass matrix one

obtains two physical scalar states h1 and h2. Masses of h1, h2 and mixing angle ↵ are given by
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The lighter Higgs state h1, for small mixing angle ↵ and vµ⌧ � v, behaves as the Standard Model

Higgs observed at the LHC [67, 68] and therefore we will take its mass to be 125.5 GeV. From the

1 In this work, to maintain the nonthermal nature of our DM candidates we consider gµ⌧ ⇠ 10�11 (see Section

V).
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be expressed in the following form,
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The mass term for the extra neutral gauge boson Zµ⌧ is also generated when �H acquires a

nonzero VEV vµ⌧ such that

MZµ⌧ = gµ⌧ vµ⌧ , (12)

where gµ⌧ is the gauge coupling corresponding to gauge group U(1)
Lµ�L⌧

. In this model all

three RH neutrinos are odd under the Z2 symmetry. However, the mass of N1 comes out to

be higher than that of N2 and N3, so that N1 can decay to the lighter RH neutrinos. Also,

we will see in Section III that the masses of N2 and N3 are nearly degenerate because of the

Lµ � L⌧ symmetry, so that both can play the role of dark matter candidate. Furthermore, in

Section IV we will show that the RH neutrinos can be produced by the freeze-in mechanism in

the early Universe, which requires a tiny gauge coupling gµ⌧ ⇠ O(10�11). Thus, in order to have

a TeV scale gauge boson Zµ⌧ we need large vµ⌧ . Therefore, by choosing appropriate values of

the relevant model parameters we can make the masses of inert doublet components higher than

the reheat temperature of the universe so that their e↵ect on the production of N2 and N3 can

be safely neglected.

III. HEAVY AND LIGHT NEUTRINO MASSES

In this section we will show how the U(1)
Lµ�L⌧

symmetry determines the mass spectrum and

mixing angles of all the six neutrinos, the three heavy ones as well as the three light ones. The

relevant part of the Lagrangian was given in Eq. (2) where the first term gives the kinetic part

while the rest give the mass terms and Yukawa terms involving the neutrinos. After U(1)
Lµ�L⌧

and electroweak symmetry breaking the mass matrix for the RH neutrinos is given by
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where the terms involving the VEV vµ⌧ appear after U(1)
Lµ�L⌧

breaking. In the limit that

U(1)
Lµ�L⌧

is unbroken, the RH neutrino mass matrix is given by

MR =
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. (14)

Eigenvalues of Eq. (14) are

M
0
2/3 = ±Mµ⌧e

i⇠

M
0
1 = Mee , (15)

giving very naturally two degenerate RH neutrinos with opposite parity. The U(1)
Lµ�L⌧

breaking

terms in Eq. (13) brings corrections to the RH neutrino mass spectrum, breaking the degeneracy

between N2 and N3. The mass splitting between them is given at first order for Mee � Mµ⌧ by

�M23 =
(heµ + he⌧ )2v2µ⌧

2Mee

. (16)

Hence, the mass splitting between N2 and N3 depends on the U(1)
Lµ�L⌧

breaking VEV vµ⌧ and

the Yukawa couplings heµ and he⌧ . In what follows, we will see that vµ⌧ will be determined by

the choice of the Zµ⌧ gauge boson. However, the Yukawa couplings heµ and he⌧ can be suitably

adjusted to yield a mass splitting of 3.5 keV, needed to explain the 3.5 keV X-ray line from

N2 ! N3� decay.

Despite having the RH neutrinos in this model, the masses for light neutrinos cannot be

generated by the Type-I seesaw mechanism since the normal Yukawa term involving the RH

neutrinos, lepton doublets and the standard model Higgs �h is forbidden by the Z2 symmetry.

The other Yukawa term between the RH neutrinos, lepton doublets and inert doublet ⌘ is allowed,

but ⌘ does not take any VEV. Hence, there is no mass term for the light neutrinos at the tree-

level. However, masses for the light neutrinos gets generated radiatively at the one-loop level [64]

through the diagram shown in Fig. 1, giving the following mass matrix for the light neutrinos

[64]
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where Mk is the mass of kth RH neutrino while M⌘
0
R, ⌘

0
I
is the mass of ⌘0

R, I
. The quantities

yji = hjUji, where hj are the Yukawa couplings in the last term of Eq. (2) and Uji are the

8

Lmu-Ltau Symmetric 
Lmu-Ltau Broken spontaneously

where the terms involving the VEV vµ⌧ appear after U(1)
Lµ�L⌧

breaking. In the limit that

U(1)
Lµ�L⌧

is unbroken, the RH neutrino mass matrix is given by

MR =

0

BBBBB@

Mee 0 0

0 0 Mµ⌧ e
i⇠

0 Mµ⌧ e
i⇠ 0

1

CCCCCA
. (14)

Eigenvalues of Eq. (14) are

M
0
2/3 = ±Mµ⌧e

i⇠

M
0
1 = Mee , (15)

giving very naturally two degenerate RH neutrinos with opposite parity. The U(1)
Lµ�L⌧

breaking

terms in Eq. (13) brings corrections to the RH neutrino mass spectrum, breaking the degeneracy

between N2 and N3. The mass splitting between them is given at first order for Mee � Mµ⌧ by

�M23 =
(heµ + he⌧ )2v2µ⌧

2Mee

. (16)

Hence, the mass splitting between N2 and N3 depends on the U(1)
Lµ�L⌧

breaking VEV vµ⌧ and

the Yukawa couplings heµ and he⌧ . In what follows, we will see that vµ⌧ will be determined by

the choice of the Zµ⌧ gauge boson. However, the Yukawa couplings heµ and he⌧ can be suitably

adjusted to yield a mass splitting of 3.5 keV, needed to explain the 3.5 keV X-ray line from

N2 ! N3� decay.

Despite having the RH neutrinos in this model, the masses for light neutrinos cannot be

generated by the Type-I seesaw mechanism since the normal Yukawa term involving the RH

neutrinos, lepton doublets and the standard model Higgs �h is forbidden by the Z2 symmetry.

The other Yukawa term between the RH neutrinos, lepton doublets and inert doublet ⌘ is allowed,

but ⌘ does not take any VEV. Hence, there is no mass term for the light neutrinos at the tree-

level. However, masses for the light neutrinos gets generated radiatively at the one-loop level [64]

through the diagram shown in Fig. 1, giving the following mass matrix for the light neutrinos

[64]

M
⌫

ij
=

X

k

yik yjk Mk

16 ⇡2

"
M

2
⌘
0
R

M
2
⌘
0
R
�M

2
k

ln
M

2
⌘
0
R

M
2
k

�

M
2
⌘
0
I

M
2
⌘
0
I
�M

2
k

ln
M

2
⌘
0
I

M
2
k

#
, (17)

where Mk is the mass of kth RH neutrino while M⌘
0
R, ⌘

0
I
is the mass of ⌘0

R, I
. The quantities

yji = hjUji, where hj are the Yukawa couplings in the last term of Eq. (2) and Uji are the

8

Dark Matter

where the terms involving the VEV vµ⌧ appear after U(1)
Lµ�L⌧

breaking. In the limit that

U(1)
Lµ�L⌧

is unbroken, the RH neutrino mass matrix is given by

MR =

0

BBBBB@

Mee 0 0

0 0 Mµ⌧ e
i⇠

0 Mµ⌧ e
i⇠ 0

1

CCCCCA
. (14)

Eigenvalues of Eq. (14) are

M
0
2/3 = ±Mµ⌧e

i⇠

M
0
1 = Mee , (15)

giving very naturally two degenerate RH neutrinos with opposite parity. The U(1)
Lµ�L⌧

breaking

terms in Eq. (13) brings corrections to the RH neutrino mass spectrum, breaking the degeneracy

between N2 and N3. The mass splitting between them is given at first order for Mee � Mµ⌧ by

�M23 =
(heµ + he⌧ )2v2µ⌧

2Mee

. (16)

Hence, the mass splitting between N2 and N3 depends on the U(1)
Lµ�L⌧

breaking VEV vµ⌧ and

the Yukawa couplings heµ and he⌧ . In what follows, we will see that vµ⌧ will be determined by

the choice of the Zµ⌧ gauge boson. However, the Yukawa couplings heµ and he⌧ can be suitably

adjusted to yield a mass splitting of 3.5 keV, needed to explain the 3.5 keV X-ray line from

N2 ! N3� decay.

Despite having the RH neutrinos in this model, the masses for light neutrinos cannot be

generated by the Type-I seesaw mechanism since the normal Yukawa term involving the RH
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There is mixing between the neutral components of �h and �H , and the o↵ diagonal elements of

the mass matrix are proportional to the parameter �13. After diagonalising the mass matrix one

obtains two physical scalar states h1 and h2. Masses of h1, h2 and mixing angle ↵ are given by
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The lighter Higgs state h1, for small mixing angle ↵ and vµ⌧ � v, behaves as the Standard Model

Higgs observed at the LHC [67, 68] and therefore we will take its mass to be 125.5 GeV. From the

1 In this work, to maintain the nonthermal nature of our DM candidates we consider gµ⌧ ⇠ 10�11 (see Section

V).
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Figure 1: Radiative neutrino mass generation by one loop.

elements of the RH neutrino mixing matrix since the flavour basis (N↵, ↵ = 1, 2, 3) of the

RH neutrinos and their mass basis (Ni, i = 1, 2 3) are related by a unitary transformation,

N↵ =
P

U↵iNi. If we put this relation into the last term of Eq. (2), one can write the Yukawa

term involving SM leptons and RH neutrinos in the following way
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In this work we have considered the masses of inert scalars greater than the reheat temperature

of the Universe, i.e. M⌘
0
R, I

⇠ 106 GeV. The masses of RH neutrinos we consider to be around

⇠ 100 GeV. If we take the parameter �5 ⇠ 10�3 and v = 246 GeV, then to obtain the neutrino

masses of the order of M⌫ ⇠ 10�11 GeV, we need y
2
ji
⇠ 10�1 which can be easily obtained. The

U(1)
Lµ�L⌧

breaking ensures that the mixing angle ✓13 is non-zero and ✓23 is non-maximal.

IV. PRODUCTION OF DARK MATTER

We consider the non-thermal production of dark matter candidates. Hence, the initial number

densities of these particles are assumed to be negligibly small and their interactions with the

particles in the thermal bath are also extremely feeble. As mentioned before, the lighter RH

neutrino states N2 and N3 are our dark matter candidates, stabilised by the Z2 symmetry.

Because of their gauge and Z2 charges they could be produced only through the decay of Zµ⌧

and h1
2 and h2 bosons. In what follows, we will see that the dominant production channel

2 Since the mass of the SM-like Higgs has to be kept at 125.5 GeV, the decay channel h1 ! NiNj will be

kinematically allowed only for lighter Ni/Nj masses.
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the Yukawa couplings heµ and he⌧ . In what follows, we will see that vµ⌧ will be determined by

the choice of the Zµ⌧ gauge boson. However, the Yukawa couplings heµ and he⌧ can be suitably

adjusted to yield a mass splitting of 3.5 keV, needed to explain the 3.5 keV X-ray line from

N2 ! N3� decay.
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generated by the Type-I seesaw mechanism since the normal Yukawa term involving the RH

neutrinos, lepton doublets and the standard model Higgs �h is forbidden by the Z2 symmetry.

The other Yukawa term between the RH neutrinos, lepton doublets and inert doublet ⌘ is allowed,

but ⌘ does not take any VEV. Hence, there is no mass term for the light neutrinos at the tree-

level. However, masses for the light neutrinos gets generated radiatively at the one-loop level [64]

through the diagram shown in Fig. 1, giving the following mass matrix for the light neutrinos
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elements of the RH neutrino mixing matrix since the flavour basis (N↵, ↵ = 1, 2, 3) of the

RH neutrinos and their mass basis (Ni, i = 1, 2 3) are related by a unitary transformation,

N↵ =
P

U↵iNi. If we put this relation into the last term of Eq. (2), one can write the Yukawa

term involving SM leptons and RH neutrinos in the following way
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In this work we have considered the masses of inert scalars greater than the reheat temperature

of the Universe, i.e. M⌘
0
R, I

⇠ 106 GeV. The masses of RH neutrinos we consider to be around

⇠ 100 GeV. If we take the parameter �5 ⇠ 10�3 and v = 246 GeV, then to obtain the neutrino

masses of the order of M⌫ ⇠ 10�11 GeV, we need y
2
ji
⇠ 10�1 which can be easily obtained. The

U(1)
Lµ�L⌧

breaking ensures that the mixing angle ✓13 is non-zero and ✓23 is non-maximal.

IV. PRODUCTION OF DARK MATTER

We consider the non-thermal production of dark matter candidates. Hence, the initial number

densities of these particles are assumed to be negligibly small and their interactions with the

particles in the thermal bath are also extremely feeble. As mentioned before, the lighter RH

neutrino states N2 and N3 are our dark matter candidates, stabilised by the Z2 symmetry.

Because of their gauge and Z2 charges they could be produced only through the decay of Zµ⌧

and h1
2 and h2 bosons. In what follows, we will see that the dominant production channel

2 Since the mass of the SM-like Higgs has to be kept at 125.5 GeV, the decay channel h1 ! NiNj will be

kinematically allowed only for lighter Ni/Nj masses.
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Because of their gauge and Z2 charges they could be produced only through the decay of Zµ⌧
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2 and h2 bosons. In what follows, we will see that the dominant production channel

2 Since the mass of the SM-like Higgs has to be kept at 125.5 GeV, the decay channel h1 ! NiNj will be

kinematically allowed only for lighter Ni/Nj masses.
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N2 ! N3� decay.

Despite having the RH neutrinos in this model, the masses for light neutrinos cannot be

generated by the Type-I seesaw mechanism since the normal Yukawa term involving the RH

neutrinos, lepton doublets and the standard model Higgs �h is forbidden by the Z2 symmetry.
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where Mk is the mass of kth RH neutrino while M⌘
0
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0
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is the mass of ⌘0
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. The quantities

yji = hjUji, where hj are the Yukawa couplings in the last term of Eq. (2) and Uji are the

8

Mixing matrix of the 
RH neutrinos
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Z2 symmetry
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Creating N2/N3 by Freeze-in

number density of the DM candidates N2 and N3. Therefore, one can easily determine the total

DM relic density for N2 and N3 candidates by using the following relation [71],

⌦DMh
2 = 2.755⇥ 108

✓
MN2

GeV

◆
YN2(TNow) + 2.755⇥ 108

✓
MN3

GeV

◆
YN3(TNow) . (32)

V. RESULTS

h2 Decay
Zμτ Decay
(h2 + Zμτ) Decay

ΩDM h
2
 = 0.12

h2 Dominant

Zμτ Dominant

Ω
D

M
 h

2

10−18

10−15

10−12

10−9

10−6

10−3

1

r (= T
Mh1

)

10−3 1 1000 106

YN2 + N3

YZμτ

MZμτ
 = 2 TeV

MZμτ
 = 1 TeV

MZμτ
 = 0.5 TeV

Y
Z

μ
τ, 

Y
N

2 
+

 N
3

10−24

10−21

10−15

10−12

10−9

r (= T
Mh1

)

10−3 1 1000 106

Figure 3: Left panel: Variation of relic density with r and contributions from h2 and Zµ⌧ in the DM

production. Right panel: Variation of comoving number density of Zµ⌧ and N2, N3 with r for three

di↵erent values of gauge boson mass. Other parameters have been kept fixed at gµ⌧ = 1.01 ⇥ 10�11,

mixing angle ↵ = 0.01, gauge boson mass MZµ⌧ = 1 TeV, DM mass MDM = 100 GeV, BSM Higgs mass

Mh2 = 5 TeV and RH neutrinos masses MN1 = 150 GeV and MDM = MN2 ' MN3 = 100 GeV.

Using Eqs. (29), (30), (31) and (32) we numerically compute the DM abundance. In the left

panel of Fig. 3 we show the time evolution of the DM relic density with r(= Mh1/T ). The left

panel of the this figure shows the comparative contribution for the two DM production channels,

Zµ⌧ ! NiNj and h2 ! NiNj. We have taken masses of the RH neutrinos N2 and N3 as 100 GeV

and hence the decay of SM-like Higgs h1 to a pair of RH neutrinos is kinematically forbidden.

From the left panel we see that for the large value of BSM Higgs mass (Mh2 ⇠ 5 TeV), the

DM production at low r (which corresponds to high T ) is dominated by h2 decay. However, as

the temperature of the universe falls and goes below the mass of the Zµ⌧ gauge bosons, they

get produced, and for high value of r (which corresponds to comparably lower temperature of

the universe), the DM production via the Zµ⌧ decay channel dominates. The reason for this
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Common Origin of  Neutrino Masses, 
Dark Matter and Baryon Asymmetry

list of particles in the present model. Here we want to point that, since we have an even number

of fermionic SU(2)D doublets, our model is free from the Witten anomaly [54]. In addition, we

have two scalar doublets in the hidden sector as well. One of the scalar doublets ⌘D does not

get any vacuum expectation value (VEV) while the remaining one (�D) has a nonzero VEV and

thus mixes with the SM Higgs doublet �h. Moreover, in order to have a stable DM candidate,

we also impose a discrete Z3 symmetry, and keep all the hidden sector fermions as well as the

inert doublet charged under Z3. These symmetries allow Majorana mass terms among the extra

SU(2)D singlet fermions, which after the breaking of the dark symmetry could switch on the

conversion of the DM to anti-DM. Therefore, to be on the safe side we introduce an additional

Z2 symmetry to forbid the Majorana mass terms among the extra fermions and reduce the

possible couplings of the second fermionic state. Under Z2,  2L,  3R and  4R are odd and the

rest of the particles including the Standard Model particles are even. Furthermore, we have two

right handed (RH) fermions Ni (i =1, 2), singlets under both SM gauge group as well as SU(2)D.

These singlet fermions play the role of the RH neutrino and are the only connector between the

visible and the hidden sector, as long as the electroweak and dark SU(2)D are unbroken and

the mixing in the scalar sector vanishes. In this sense our model is a special case in the class of

neutrino(+Higgs) portal models [62–67].

A. Particle spectrum

Gauge

Group

SU(3)c

SU(2)L

SU(2)D

Z3 ⇥ Z2

Fermion Fields

 1L = ( 1, 2)TL  1R  2R  2L = ( 3, 4)TL  3R  4R Ni

1 1 1 1 1 1 1

1 1 1 1 1 1 1

2 1 1 2 1 1 1

(!, 1) (!, 1) (!, 1) (!2,�1) (!2,�1) (!2,�1) (1, 1)

Scalar Fields

�h �D ⌘D

1 1 1

2 1 1

1 2 2

(1, 1) (1, 1) (!, 1)

Table I: List of hidden sector particles and connector particles and their corresponding charges under

various symmetry groups. All the particles listed above have zero hypercharge except SM Higgs doublet

�h which has hypercharge Y = 1/2.

4

Biswas, SC, Covi, Khan JHEP 05 (2019)

(An example case)

Falkowski,Ruderman,Volansky JHEP (2011)
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B. Lagrangian

The SU(3)c ⇥ SU(2)
L
⇥ SU(2)

D
⇥ U(1)

Y
⇥ Z3 invariant Lagrangian for our present model is

given by,

L = LSM + i k�
µ
D

k

µ
 k + (DD

µ
�D)

†(DDµ
�D) + (DD

µ
⌘D)

†(DDµ
⌘D) +

⇣
yijL̄i�̃hNjR

+ h.c.

⌘

+
⇣
�1 1L �̃D  1R + �2 1L �D  2R +�3 2L �̃D  3R + �4 2L �D  4R + h.c.

⌘

�↵j 1L⌘DNjR
+ iNjR

/@NjR
�MjNj

c

R
NjR

� V(�h,�D, ⌘D) , (1)

where i = 1 to 3 while j runs from 1 to 2 and D
D

µ
is the covariant derivative for SU(2)D. We

assign the Z3 charges to the di↵erent fields in such a way so that the lightest component of the

dark doublet  1L becomes stable and a viable DM candidate. Moreover, in the present work we

are interested in  1
2 production from the decays of RH-neutrinos. Note that we can consider this

state to have all real couplings by absorbing all the phases in �1,2, in the RH states  1,2R, while

the phases of ↵1,2 can be absorbed into the doublets  1L and ⌘D. Without loss of generality

we can also consider the heavy Majorana masses M1,2 to be real and positive, but redefining

accordingly the heavy RH neutrino fields N1,2R.

In the model there is also a second state, possibly  3, which is stable due to the Z2 and Z3

symmetries and could contribute to the Dark Matter density. To avoid both a substantial  3

freeze-out density and a symmetric DM component from  1, the presence of the SU(2)D gauge

symmetry is crucial since it allows for an e�cient annihilation of the fermions, as long as they

are not too heavy. We will discuss the precise value of the allowed mass range later on. In this

way, the main component of the DM in the Universe will be generated by the DM asymmetry

in the RH neutrino’s decays.

Given the symmetries discussed above, the gauge invariant scalar potential has the following

form

V(�h,�D, ⌘D) = �µ
2
h
(�†

h
�h) + �h(�

†
h
�h)

2
� µ

2
D
(�†

D
�D) + �D(�

†
D
�D)

2

+µ
2
⌘
(⌘†

D
⌘D) + �⌘(⌘

†
D
⌘D)

2 + �hD(�
†
h
�h)(�

†
D
�D) + �h⌘(�

†
h
�h)(⌘

†
D
⌘D)

+�D1(�
†
D
�D)(⌘

†
D
⌘D) + �D2(�

†
D
⌘D)(⌘

†
D
�D) + �D3(�D⌘

3
D
+ h.c.) . (2)

Here, both the doublets �h and �D acquire VEVs and generate masses to SM particles and the

hidden sector fermions after spontaneous breaking of SU(2)L ⇥ U(1)
Y
and SU(2)D symmetries,

respectively. In the unitary gauge, scalar doublets �h and �D take the following form after

2 Like the SM lepton doublets, in dark sector too, we have assumed that between the components of a dark

doublet the component with isospin +1/2 is the lightest one.
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the phases of ↵1,2 can be absorbed into the doublets  1L and ⌘D. Without loss of generality
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accordingly the heavy RH neutrino fields N1,2R.

In the model there is also a second state, possibly  3, which is stable due to the Z2 and Z3

symmetries and could contribute to the Dark Matter density. To avoid both a substantial  3

freeze-out density and a symmetric DM component from  1, the presence of the SU(2)D gauge

symmetry is crucial since it allows for an e�cient annihilation of the fermions, as long as they

are not too heavy. We will discuss the precise value of the allowed mass range later on. In this

way, the main component of the DM in the Universe will be generated by the DM asymmetry

in the RH neutrino’s decays.
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form
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Here, both the doublets �h and �D acquire VEVs and generate masses to SM particles and the
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Y
and SU(2)D symmetries,

respectively. In the unitary gauge, scalar doublets �h and �D take the following form after

2 Like the SM lepton doublets, in dark sector too, we have assumed that between the components of a dark
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symmetry breaking,

�h =

 
0

v+hp
2

!
, �D =

 
0

vD+Hp
2

!
. (3)

In the scalar potential there is a mixing term between the CP even neutral components of the

two doublets �h and �D, hence the gauge basis and mass eigenbasis will be di↵erent. In h, H

basis the mass square mixing matrix will be as follows

M
2
scalar

=

 
2�hv

2
�hDv vD

�hDv vD 2�Dv
2
D

!
, (4)

After diagonalising the above mass matrix we get the physical masses and the corresponding

physical states which are linear combinations of gauge basis in the following manner

h1 = h cos ⇣ �H sin ⇣ ,

h2 = h sin ⇣ +H cos ⇣ , (5)

where ⇣ is the mixing angle between h1, h2 and the mixing angle can be expressed in terms of

the Lagrangian parameters in following way

tan 2⇣ =
�hDvvD

�Dv
2
D
� �hv

2
. (6)

As mentioned above, after diagonalising the scalar mass matrix in Eq. (4), we get the physical

masses for the two neutral scalars as

M
2
h1

= �hv
2 + �Dv

2
D
�

q
(�Dv

2
D
� �hv

2)2 + (�hD v vD)2 ,

M
2
h2

= �hv
2 + �Dv

2
D
+
q
(�Dv

2
D
� �hv

2)2 + (�hD v vD)2 . (7)

We identify the lighter Higgs scalar as the SM-like Higgs observed at the LHC. Therefore, we

take Mh1 = 126 GeV and consider small mixing angle sin ⇣  0.1 in order to ensure agreement

with the Higgs signal strengths at the LHC [68–70].

Now, we can express all the quartic couplings in terms of the physical Higgs masses as,

�D =
M

2
h2

+M
2
h1

+ (M2
h2

�M
2
h1
) cos 2⇣

4v2
D

,

�h =
M

2
h2

+M
2
h1

� (M2
h2

�M
2
h1
) cos 2⇣

4v2
D

,

�hD =
(M2

h2
�M

2
h1
) sin 2⇣

2vvD
,

µ
2
h
= �hv

2 + �hD

v
2
D

2
,

µ
2
D

= �Dv
2
D
+ �hD

v
2

2
. (8)
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state to have all real couplings by absorbing all the phases in �1,2, in the RH states  1,2R, while

the phases of ↵1,2 can be absorbed into the doublets  1L and ⌘D. Without loss of generality

we can also consider the heavy Majorana masses M1,2 to be real and positive, but redefining

accordingly the heavy RH neutrino fields N1,2R.

In the model there is also a second state, possibly  3, which is stable due to the Z2 and Z3

symmetries and could contribute to the Dark Matter density. To avoid both a substantial  3

freeze-out density and a symmetric DM component from  1, the presence of the SU(2)D gauge

symmetry is crucial since it allows for an e�cient annihilation of the fermions, as long as they

are not too heavy. We will discuss the precise value of the allowed mass range later on. In this

way, the main component of the DM in the Universe will be generated by the DM asymmetry

in the RH neutrino’s decays.

Given the symmetries discussed above, the gauge invariant scalar potential has the following

form
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Here, both the doublets �h and �D acquire VEVs and generate masses to SM particles and the

hidden sector fermions after spontaneous breaking of SU(2)L ⇥ U(1)
Y
and SU(2)D symmetries,

respectively. In the unitary gauge, scalar doublets �h and �D take the following form after

2 Like the SM lepton doublets, in dark sector too, we have assumed that between the components of a dark

doublet the component with isospin +1/2 is the lightest one.

5

Neutrino Mass

In the above expressions, all the quartic couplings have to be within the perturbative regime

which is �i <4⇡.

After the SU(2)D symmetry breaking, the DM candidate  1(=  1L� 1R) will get mass which

is

M 1 = MDM =
�1vD
p
2

. (9)

The other scalar doublet ⌘D, which has a nonzero Z3 charge, will also get mass after breaking

of both SM and hidden sector gauge symmetries. In the present model, among the Z3 charged

particles i.e. hidden sector fermions and scalar ⌘D, we consider the fermion  1 as the lightest

one. This is always possible by tuning the couplings related to ⌘D and �↵s (↵ = 2 to 4) so that

heavier Z3 charged particles decay to the lightest one and thereby  1 becomes stable. Thus,  1

will be a viable DM candidate in our model. Moreover, the invariance of the Z3 and Z2 symmetry

actually make the hidden sector fermion mass matrix diagonal, which means unlike the quark or

neutrino mixing in the SM, there is no mixing between the fermions in di↵erent SU(2)D doublets.

III. NEUTRINO MASS

In this work, as mentioned in the Model section (Section II), instead of three right handed

neutrinos we consider a minimal setting and we add only two, which is su�cient to explain

the current neutrino oscillation data. Therefore, in this framework, light neutrino masses are

generated by the well known Type-I seesaw mechanism, where the light neutrino mass matrix is

related to the Dirac and Majorana mass matrices in the following way

m⌫ = �MDM
�1
R

M
T

D
, (10)

where MD is the Dirac mass matrix (3⇥ 2) while the Majorana mass matrix for the heavy right

handed neutrinos NjR
(j = 1, 2) is denoted by a 2⇥2 matrix MR. In this work, for simplicity and

without loss of generality, we assume MR to be a diagonal matrix i.e. MR = diag(MN1 ,MN2).

One can also choose MN1 , MN2 real and positive by redefining the phases of the spinors N1 and

N2 in the mass eigenstate basis. Similarly, by redefining the phases of the left handed neutrinos

in the flavour basis, we can remove the phases of one entire column of MD matrix. So we consider

all the elements of the first column of the Dirac mass matrix (MD) as real. Therefore, in matrix

form it looks like as follows,

MD =
yi j v
p
2

=
v
p
2

0

B@
yee y

R

eµ
� iy

I

eµ

yµe y
R

µµ
� iy

I

µµ

y⌧e y
R

⌧µ
� iy

I

⌧µ

1

CA . (11)
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Here, both the doublets �h and �D acquire VEVs and generate masses to SM particles and the
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and SU(2)D symmetries,

respectively. In the unitary gauge, scalar doublets �h and �D take the following form after

2 Like the SM lepton doublets, in dark sector too, we have assumed that between the components of a dark

doublet the component with isospin +1/2 is the lightest one.
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which is �i <4⇡.

After the SU(2)D symmetry breaking, the DM candidate  1(=  1L� 1R) will get mass which

is
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The other scalar doublet ⌘D, which has a nonzero Z3 charge, will also get mass after breaking
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one. This is always possible by tuning the couplings related to ⌘D and �↵s (↵ = 2 to 4) so that

heavier Z3 charged particles decay to the lightest one and thereby  1 becomes stable. Thus,  1

will be a viable DM candidate in our model. Moreover, the invariance of the Z3 and Z2 symmetry

actually make the hidden sector fermion mass matrix diagonal, which means unlike the quark or

neutrino mixing in the SM, there is no mixing between the fermions in di↵erent SU(2)D doublets.
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In this work, as mentioned in the Model section (Section II), instead of three right handed
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Nu Mass, Lepton asymmetry, DM density are 
all related via the Yukawa coupling 

regime are as follows,
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where the first equation represents the evolution of the comoving yield YN1 of N1. The yield of

a species is defined as the actual number density of that species divided by the entropy density

of the Universe. If there is no interaction then the yield of a species remains unaltered, as the

expansion of the Universe dilutes the number density and the entropy density in the same way.

The R.H.S. of the Boltzmann equation forN1 describes the possible ways to change the number

density of N1. The quantity �D1 is related to the total decay width of N1 i.e. the decay of N1

into both visible and dark sectors. On the other hand, �1
�,s

and �
1
�,t

are related to s-channel and

t-channel scattering of N1 mediated by �h, which can also lead to the destruction or production

of N1. The expressions of �D1 , �
1
�h,s

and �
1
�h,t

are given in the Appendix B. The second and third

equations are the evolution equations for the lepton asymmetry and Dark Matter asymmetry,

respectively. The first term in the R.H.S. of Eq. (16) (Eq. (17))) is the source term of lepton

(Dark Matter) asymmetry from N1 decay, while the second term represents the washout e↵ects

on the created lepton (Dark Matter) asymmetry due to the inverse decays of N1. In Eqs. (16, 17),

Brl and BrD are the branching ratios of RH neutrino N1 decay to leptonic sector and dark sector,

respectively. In the above equations the CP asymmetry parameters ✏l, D are zero at tree level.

However, by considering both tree level and one loop level diagrams (vertex correction and wave

function correction, see Fig. 2 of [82]), non-zero values for the CP-asymmetry parameters ✏l, D

arise due to the interference between tree level and one loop level diagrams. The CP asymmetry

parameter for the visible sector is defined as [25, 29]
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�(N1 ! L�h)� �(N1 ! L̄�
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, (18)

where we have normalized to the total RH neutrino decay rate and summed over the lepton

flavours, i.e. ✏l =
P

↵
✏
↵

l
. In Eq. (18) we include contributions from the vertex and wave-function

diagrams with virtual SM states as in classic leptogenesis, see e.g. [25], and also the contribution

from the wave-function diagram with virtual dark sector states.

10
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Similarly, the CP asymmetry in dark sector is defined as [29]

✏D =
�(N1 !  1L ⌘D)� �(N1 !  1L ⌘

†
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[(y†y)11 + ↵1↵
?

1]
. (19)

In the case of Dark Matter, we have in an analogous way included contributions from the vertex

and wave-function diagrams from the dark sector and only the wave-function diagram from the

leptons. The total decay width of the RH-neutrino N1 is given by

�N1 =
MN1

8 ⇡

⇥
(y†y)11 + |↵1|

2
⇤
. (20)

From Eqs. (18, 19) we see that both ✏l and ✏D are determined by the Yukawa couplings yij and

RH-neutrino masses. One very important thing to stress again is that in the dark sector we can

absorb the phases of the couplings ↵j (j = 1, 2) by redefining the phases of  1L and the complex

scalar doublet ⌘D. Indeed, as in the case of a single generation of fermions, no CP phase is

physical in the DM sector. Therefore the only source of CP violation for both the leptonic and

DM sectors are the imaginary parts of the lepton-neutrino Yukawa couplings. We have then

✏l

✏D
=

Im
h
3
�
(y†y)?12
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+ 2↵1↵2(y†y)?12

i
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y�ey
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. (21)

We see that in the particular case when (y†y)?12 is purely imaginary, i.e. y
R = 0, or generically

when ↵1↵2 �
P

�
y�ey

R

�µ
, the two CP violation parameters are equal and we can expect a similar

asymmetry in the two sectors, as long as the wash-out processes are negligible. This is indeed

not di�cult to achieve as the Yukawas connected to the first generation of the SM y�e have to

be small to give the small mixing angle ✓13. From the matrix in Eq. (11), we have that

(y†y)?12 = yee(y
R

eµ
+ iy

I

eµ
) + yµe(y

R

µµ
+ iy

I

µµ
) + y⌧e(y

R

⌧µ
+ iy

I

⌧µ
) (22)

so that this quantity is purely imaginary when the second column of the Dirac mass matrix

is purely imaginary and only six real Yukawa parameters remain. Note that in this limit, the

CP violation in the RH neutrino decay can still be large, while the light neutrino mass matrix

is real and the Dirac phase is therefore vanishing. We have checked that with only imaginary

components in the second column of the Dirac mass matrix (see Eq. (11)) and also in the same

range of the parameters value as given in Eq. (14), one can easily obtain the three neutrino mixing

angles and the two mass square di↵erences in their observed 3� ranges. For this particular choice

of parameters, one can easily estimate the value of the lepton CP asymmetry parameter (✏l). In

this case ✏l takes the following form,

✏l =
MN1

8⇡MN2

↵2

↵1
Im

⇥
(y†y)?12

⇤
(23)
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Conclusions
Neutrino masses and mixing, dark matter and baryon asymmetry are all observational 
evidences for physics beyond the standard model

Neutrino oscillation parameters are expected to be well determined in the next 
generation LBL, reactor and atmospheric neutrino experiments

CP violation is of particular interest

Tiny neutrino masses and peculiar mixing indicate new physics and new symmetries

One needs a common theoretical framework to explain all the above mentioned 
observational evidences of BSM


