Theoretical frameworks for dark matter and the dark sector

Riccardo Catena

Chalmers University of Technology

January 7, 2023

Overview

- **The main purpose of this seminar is to review a selection of "theoretical"** frameworks" that are currently used in the analysis of DM search experiments
- I will divide these frameworks into two classes
	- 1. Extending the Standard Model (SM) matter/Higgs sector "only":
	- Extended matter/Higgs sector ✓
	- Extended gauge sector χ
	- 2. Extending the SM matter/Higgs sector as well as the gauge sector:
		- Extended matter/Higgs sector ✓
		- Extended gauge sector ✓
- \blacksquare I will make examples of the interdisciplinary input the use of each framework requires

Outline

- Introduction: evidence for DM (overview)
- Extending the SM matter/Higgs sector only
- WIMPs
- Non relativistic effective theories
- Extending the SM matter/Higgs sector as well as the SM gauge sector
- Scalar and fermionic DM coupled to a "dark photon"
- Spin-1 DM models
- **Summary and conclusion**

Evidence for DM / Overview

 \blacksquare How do we know that DM actually exists? The evidence for DM is based on the gravitational pull it exerts on stars, galaxies and light from luminous sources

Evidence for DM / Large scale structures

Wayne T. Hu PhD thesis, "Wandering in the Background: A CMB Explorer"; astro-ph/9508126

Evidence for DM in the Milky Way

F. Iocco, M. Pato and G. Bertone, "Evidence for dark matter in the inner Milky Way," Nature Phys. **11**, 245 (2015)

Extending the SM matter/Higgs sector only

General considerations

- The extended framework should be capable of reproducing the present DM abundance, *Y*
- When the dominant number changing process is DM pair annihilation into SM particles

$$
z\frac{H}{s}\frac{\mathrm{d}\,Y}{\mathrm{d}z} = \langle \sigma_{\rm ann} v \rangle \left(Y_{\rm eq}^2 - Y^2 \right)
$$

- Freeze-out mechanism (i.e. thermal production): interplay of the two terms in the RHS
- Freeze-in (i.e. non-thermal production): second term not present in the RHS
- For weak-scale DM interactions, the freeze-out mechanism implies m_{ν} > $\mathcal{O}(1)$ GeV

General considerations

- It should also agree with observations, e.g. evade DM direct detection constraints
- Inspection of the expected rate of, e.g., DM-induced nuclear recoils or electronic transitions in direct detection experiments shows different ways to do so:

3) **Matrix element is momentum and/or velocity suppressed**

SUSY WIMPs

- **Prime candidate: neutralino.** Linear combination of neutral components of SU(2) singlet (bino), doublets (higgsinos) and triplet (wino)
- **WIMP-quark** interactions are given by

$$
\begin{split} \mathcal{L}_\text{SI} &= f_q \bar{\chi} \chi \bar{q} q \\ &+ g_q \bar{\chi} \gamma^\mu \partial^\nu \chi (\bar{q} \gamma_\mu \partial_\nu q - \partial_\nu \bar{q} \gamma_\mu q) \end{split}
$$

 $\mathscr{L}_{\text{SD}} = f_q \bar{\chi} \gamma^{\mu} \gamma^5 \chi \bar{q} \gamma_{\mu} (c_q + d_q \gamma_5) q$

Effective couplings non-trivially depend on SUSY parameters: enhancements and cancellations are possible

M. Chakraborti, L. Roszkowski, S. Trojanowski, "GUT-constrained supersymmetry and dark matter in light of the new $(g - 2)$ _u determination," JHEP **05** (2021), 252

Minimal DM

- The framework relies on a systematic classification and characterisation of all SU(2) representations, without a restriction to SUSY-induced combinations
- An odd representation of dimension *n* (*n*-uplet) and zero hypercharge (Y=0) includes a neutral component: $Q = Y + T_3$, $T_3 = diag[(n + 1)/2 − i]$, $i = 1, \ldots, n$
- Only two free parameters, n and M_{χ} :

S. Bottaro et al. "Closing the window on WIMP Dark Matter", Eur. Phys. J. C **82** (2022) no.1, 31

Non-relativistic effective theories

- **n** In general, bounds from DM-induced nuclear recoil searches can be evaded if the amplitude for non-relativistic DM-nucleon scattering, \mathcal{M}_{rN} , is "suppressed"
- It is often assumed to be a function of the momentum transfer only, i.e. $\mathcal{M}_{\gamma N} = \mathcal{M}_{\gamma N}(q)$
- Is this the most general form $\mathcal{M}_{\gamma N}$ can have?

■ More pragmatically, is this the "typical" form for $\mathcal{M}_{\gamma N}$?

Non-relativistic effective theories

■ In the non-relativistic limit, \mathcal{M}_{rN} is constrained by Galilean invariance and momentum conservation. Consequently it can at most depend on 2 3D momenta:

$$
\mathscr{M}_{\chi N} = \mathscr{M}_{\chi N}(\boldsymbol{q}, \boldsymbol{v}^{\perp})
$$

where $v^{\perp} = v + q/(2\mu_{\chi N})$

Furthermore, in the non-relativistic limit $|q|/m_N \ll 1$ and $|v| \ll 1$, which implies

$$
\mathcal{M}_{\chi N} = \sum_{i < \infty} c_i^N \langle \mathcal{O}_i \rangle
$$

where \mathscr{O}_i are quantum mechanical operators: $\mathscr{O}_4={\bf S}_\chi\cdot{\bf S}_N,\ \mathscr{O}_7={\bf S}_\chi\cdot v^\perp$, etc…

J. Fan, M. Reece and L. T. Wang, "Non-relativistic effective theory of dark matter direct detection," JCAP **11** (2010), 042

A. L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers and Y. Xu, "The Effective Field Theory of Dark Matter Direct Detection," JCAP **02** (2013), 004

Spin-independent and -dependent interactions

For spin-independent interactions, $\mathcal{M}_{\chi N} = c_1^N \langle \mathbb{1}_{\chi N} \rangle$

Experimental results presented in terms of,

$$
\sigma_{\rm N}^{SI} = \frac{\mu_{\chi N}^2}{\pi} (c_1^N)^2
$$

For spin-dependent interactions, $\mathscr{M}_{\chi N} = c_4^N \langle \mathbf{S}_N \cdot \mathbf{S}_{\chi} \rangle$

Experimental results presented in terms of,

$$
\sigma_N^{\text{SD}} = \frac{\mu_{\chi N}^2 j_\chi (j_\chi+1)}{4\pi} (c_4^N)^2
$$

2 J. Aalbers et al., "First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment," arXiv:2207.03764

Non-standard effective operators

E. Aprile et al., "Effective field theory search for highenergy nuclear recoils using the XENON100 dark matter detector," Phys. Rev. D **96** (2017) no.4, 042004

J. Xia et al., "PandaX-II Constraints on Spin-Dependent WIMP-Nucleon Effective Interactions," Phys. Lett. B **792** (2019), 193-198

G. Angloher et al., "Limits on Dark Matter Effective Field Theory Parameters with CRESST-II," Eur. Phys. J. C **79** (2019) no.1, 43

Including mesons: Chiral Effective Field Theory

■ Non-relativistic effective theories do not account for meson exchange effects in DM-nucleus scattering:

Meson exchange effects induce a q -dependence in the c_i^N coupling constants,

$$
c_i^N = c_i^N(\boldsymbol{q})
$$

■ This *q*-dependence can be computed in Chiral Effective Field Theory F. Bishara, J. Brod, B. Grinstein and J. Zupan, "Chiral Effective Theory of Dark Matter Direct Detection," JCAP **02** (2017), 009

Uncertainty quantification in Chiral Effective Field Theory

D. Gazda, R. Catena and C. Forssén, "Ab initio nuclear response functions for dark matter searches," Phys. Rev. D **95** (2017) no.10, 103011

Extending the SM matter/Higgs sector and the SM gauge sector

General considerations

- The lack of WIMP discovery motivated the exploration of "alternative frameworks"
- Exploration driven by "detectability" and the question: "why did DM escape detection?"
- **Possible answer: DM has a sub-GeV mass and is too light to induce a** nuclear recoil
- **Indee** Insisting on the thermal production mechanism, naturally leads to the idea of dark sector:
- For $m_{\text{DM}} < \mathcal{O}(1)$ GeV, WIMPs are overproduced by the freeze-out mechanism
- Introducing a new, "light" mediator reconciles thermal production with CMB data
- Below, by "dark sector" I will denote a model with sub-GeV DM and a light gauge mediator

Dark sectors including a "dark photon"

- **P** Perhaps the simplest way to add a new mediator to the SM is by a $U(1)$ _d gauge group
- A "kinetic mixing" between the $U(1)_d$ gauge boson, i.e. the "dark photon", and the ordinary photon is compatible with gauge symmetries. It arises via loops

■ The "dark sector" Lagrangian is given by

$$
\mathcal{L}_{\rm DS} = -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'_{\mu} A'^{\mu} + \frac{1}{2} \epsilon F_{\mu\nu} F'^{\mu\nu} + \mathcal{L}_{\rm DM}
$$

- \mathscr{L}_{DM} is the DM Lagrangian
- The model's parameter are m_{A} , m_{DM} , ε , and the new gauge coupling g_d

Dark sectors with scalar and fermionic DM

- Standard benchmarks for $\mathscr{L}_{\mathrm{DM}}$ when DM has spin 0 or spin 1/2 (thermal targets):
- Majorana DM:

$$
\mathcal{L}_{\rm DM} = \mathcal{L}_{\rm kin} - \frac{1}{2} g_d A'_{\mu} \bar{\chi} \gamma^{\mu} \gamma^5 \chi
$$

- Pseudo-Dirac DM:

$$
\mathcal{L}_{\rm DM} = \mathcal{L}_{\rm kin} - g_d A'_{\mu} i (\bar{\chi}_1 \gamma^{\mu} \chi_2 - \bar{\chi}_2 \gamma^{\mu} \chi_1)
$$

- Scalar Elastic DM:

$$
\mathcal{L}_{\rm DM} = \mathcal{L}_{\rm kin} - g_d A'_{\mu} i (\chi^* \partial^{\mu} \chi - \chi \partial^{\mu} \chi^*)
$$

- Scalar Inelastic DM:

$$
\mathcal{L}_{\rm DM} = \mathcal{L}_{\rm kin} - g_d A'_{\mu} i \left(\chi_1^* \partial^{\mu} \chi_2 - \chi_2^* \partial^{\mu} \chi_1 \right)
$$

Dark sectors with spin-1 DM

- **Proposed benchmarks for** \mathscr{L}_{DM} **when DM has spin 1 (thermal targets):**
- b_5 coupling:

$$
\mathcal{L}_{\rm DM} = \mathcal{L}_{\rm kin} - ib_5 A^{\prime \mu} \left(X_{\nu}^{\dagger} \partial_{\mu} X^{\nu} - (\partial_{\mu} X^{\dagger \nu}) X_{\nu} \right)
$$

 \Re (b_6) coupling:

$$
\mathcal{L}_{\rm DM} = \mathcal{L}_{\rm kin} - \Re(b_6) A^{\prime \mu} \partial_{\nu} \left(X^{\dagger \nu} X_{\mu} + X_{\mu}^{\dagger} X^{\nu} \right)
$$

 $\mathfrak{F}(b_6)$ coupling:

$$
\mathcal{L}_{\rm DM} = \mathcal{L}_{\rm kin} - i \mathfrak{F}(b_6) A^{\prime \mu} \partial_{\nu} \left(X^{\dagger \nu} X_{\mu} - X_{\mu}^{\dagger} X^{\nu} \right)
$$

 $-$ **R** (b_7) coupling:

$$
\mathcal{L}_{\rm DM} = \mathcal{L}_{\rm kin} - \Re(b_7) A^{\prime\sigma} \epsilon_{\mu\nu\rho\sigma} \left(X^{\dagger\mu} \partial^{\nu} X^{\rho} + X^{\mu} \partial^{\nu} X^{\dagger\rho} \right)
$$

- $\mathfrak{F}(b_7)$ coupling:

$$
\mathcal{L}_{\text{DM}} = \mathcal{L}_{\text{kin}} - i \mathfrak{F}(b_7) A^{\prime \sigma} \epsilon_{\mu \nu \rho \sigma} \left(X^{\dagger \mu} \partial^{\nu} X^{\rho} - X^{\mu} \partial^{\nu} X^{\dagger \rho} \right)
$$

Non-relativistic vs relativistic tests of dark sectors

- **n** Comparing these models with observations, one is interested in two search strategies:
- Non-relativistic tests, i.e. DM direct detection via electronic transitions
- Relativistic tests, i.e. beam dump and fixed target experiments
- In the non-relativistic case, I use an effective theory framework for sub-GeV DM
- combined with solid state physics methods, e.g. density functional theory (DFT)
- The above models for spin-0, $-1/2$ and -1 DM can be matched on this framework
- \blacksquare In the relativistic case, I present an overview of constraints on DM thermal targets
- focusing on spin-0 and spin-1/2 (standard), and spin-1 DM (new) separately

Non-relativistic DM-electron scattering in detector materials

- In any theoretical framework for Sub-GeV DM-electron scattering, the amplitude for non-relativistic DM scattering by free electrons, ${\mathscr M}_{\chi e}$, plays a key role
- It is often assumed to be a function of the momentum transfer only, i.e. $\mathcal{M}_{\chi e} = \mathcal{M}_{\chi e}(q)$
- From $\mathscr{M}_{\chi e}$, one calculates the rate of DM-induced electronic transitions in detectors

$$
\mathrm{d} \mathcal{R} = \frac{\rho_\chi}{m_\chi} \int \mathrm{d} v \, |v| f(v+v_\oplus) \, \mathrm{d} \sigma_{1\to 2}
$$

where

$$
d\sigma_{1\to 2} = \frac{1}{16m_{\chi}^2 m_e^2 |\mathbf{v}|} \frac{dq}{(2\pi)^3} |\int \frac{d\mathbf{k}}{(2\pi)^3} \psi_2^*(\mathbf{k} + \mathbf{q}) \mathcal{M}_{\chi e}(\dots) \psi_1(\mathbf{k})|^2 \delta(E_2 - E_1)
$$

Non-relativistic effective theories reloaded

In the non-relativistic limit, i.e. $|q|/m_e \ll 1$ and $|v| \ll 1$, ${\mathscr M}_{\chi e}$ admits an effective theory expansion (analogous to the one in the case of nuclear recoils)

$$
\mathcal{M}_{\chi e} = \sum_{i < \infty} c_i \langle \mathcal{O}_i \rangle
$$

where \mathscr{O}_i are quantum mechanical operators: $\mathscr{O}_4 = \mathbf{S}_\chi \cdot \mathbf{S}_N, \ \mathscr{O}_7 = \mathbf{S}_\chi \cdot \boldsymbol{v}^\perp,$ etc…

 \blacksquare The rate of DM-induced electron transitions in materials can now be written as)

$$
\frac{\mathrm{d}\mathcal{R}}{\mathrm{d}\ln\Delta E} = \frac{n_\chi}{128\pi m_\chi^2 m_e^2} \int \mathrm{d}q \, q \, \hat{\eta} \left(q, \Delta E \right) \sum_{l=1}^r \Re \left[\mathcal{R}_l^*(q, v) \overline{\mathcal{W}}_l(q, \Delta E) \right]
$$
\n
$$
\text{Particle physics input} \quad \text{Response functions from solid state physics}
$$

R. Catena, T. Emken, N. A. Spaldin and W. Tarantino, "Atomic responses to general dark matter-electron interactions," Phys. Rev. Res. **2** (2020) no.3, 033195 R. Catena, T. Emken, M. Matas, N. A. Spaldin and E. Urdshals, "Crystal responses to general dark matterelectron interactions," Phys. Rev. Res. **3** (2021) no.3, 033149

Response function formalism

Selected response functions for xenon

R. Catena, T. Emken, N. A. Spaldin and W. Tarantino, " Phys. Rev. Res. **2** (2020) no.3, 033195

Selected response functions for silicon crystals

R. Catena, T. Emken, M. Matas, N. A. Spaldin and E. Urdshals, Phys. Rev. Res. **3** (2021) no.3, 033149

Response function formalism

The response functions $\mathscr{W}_{l}(q,\Delta E)$ admit the following compact representation

$$
\mathscr{W}_l(\mathbf{q}, \Delta E) = \frac{2}{\pi} \Delta E \sum_{\{1\}, \{2\}} \mathscr{B}_l \delta(\Delta E - E_2 + E_1)
$$

where the ${\mathscr B}_l$'s are (up to 5) material-specific electron wave function overlap integrals

R. Catena, et al. "Dark matter - electron interactions in materials beyond the dark photon model" arXiv:2210.07305

Relativistic dark sector searches at beam dump experiments

Example of a beam dump experiment for dark sector searches (layout of E137)

J. D. Bjorken et al., "Search for neutral metastable penetrating particles produced in the SLAC beam dump", Phys. Rev. D **38**, 3375 (1988)

Relativistic dark sector searches at LDMX

■ Conceptual schematic of an expected signal (a) and background (b) process at LDMX.

T. Åkeson et al. FERMILAB-PUB-18-324-A, SLAC-PUB-17303

Prospects for dark sector searches at beam dump experiments and LDMX

Spin 0 and spin $1/2$ thermal targets:

T. Åkeson et al. FERMILAB-PUB-18-324-A, SLAC-PUB-17303

Prospects for dark sector searches at beam dump experiments and LDMX

 \blacksquare Spin 1 thermal targets (preliminary):

R. Catena and T. Gray, "New thermal targets for spin-1 DM searches at beam dump and fixed target experiments", in progress

Summary and conclusions

- I reviewed a selection of theoretical frameworks used in the analysis of DM search experiments
- **F** Focusing on models extending the SM matter/Higgs sector only, I discussed aspects of:
- SUSY DM,
- Minimal DM
- Non-relativistic effective theories
- Focusing on frameworks including a DM candidate and a particle mediator, I reviewed dark sector models for spin-0 and spin-1/2 as well as spin-1 (new) DM
- \blacksquare The highly interdisciplinary character of the DM/dark sectors field calls for an increased collaboration between particle, nuclear and solid state physicists