Search for Chiral Magnetic Wave in heavy-ion collisions

- ✓ Motivation
- ✓ Experimental meaurements
- ✓ Backgrounds
- ✓ Model simulation
- ✓ Summary

The 27th Nordic Particle Physics Meeting

Wenya Wu

Wenya Wu Niels Bohr Institute, Copenhagen-university, Denmark Fudan university, Shanghai, China

Outline

- ✓ Chiral Magnetic Effect (CME): $j_{\nu} = \frac{N_c e}{2\pi^2} \mu_A B$
- ✓ Chiral Separation Effect (CSE): $j_{\rm A} = \frac{N_c e}{2\pi^2} \mu_{\nu} B$
- **Chiral Magnetic Wave (CMW)**: CME+CSE

The 27th Nordic Particle Physics Meeting

- ✓Chiral symmetry restoration
- ✓ Deconfinement
- ✓QCD vacuum transitions
- \checkmark Extremely strong magnetic field (~10¹⁵ T)

All the necessary conditions are possible to be achieved in heavy-ion collisions

K. Dmitri et al. Phys.Rev.Lett. 81 512-515 (1998) B. Yannis et al. Phys. Rev. Lett. 107 052303 (2011)

Experimental observable — slope

The 27th Nordic Particle Physics Meeting

Wenya Wu

Integral covariance : $\langle v_2^{\pm} A_{\rm ch} \rangle - \langle A_{\rm ch} \rangle \langle v_2^{\pm} \rangle \approx \mp r \sigma_{A_{\rm ch}}^2 / 2$

 $dN_{\rm ch}/d\eta \left(\left\langle v_2^{\pm} A_{\rm ch} \right\rangle - \left\langle A_{\rm ch} \right\rangle \left\langle v_2^{\pm} \right\rangle \right)_{neg-pos}$

Covariance observable:

(proposed in S. A. Voloshin et al. Nucl. Phys. A 931 992-996 (2014))

- ✓ Proportional to slope parameter
- ✓ Saves statistics
- \checkmark Has differential form (see backup)

The 27th Nordic Particle Physics Meeting

Experimental observable — covariance

Previous experimental measurements — ALICE & STAR

Experimental results from CMS and the LCC background

CMS Collaboration Phys. Rev. C 100, 064908 (2019)

Most possible background: local charge conservation (LCC) convoluted with v_2

- The observable in p-Pb collision is in line with the one in Pb-Pb collisions
- Higher harmonic (v_3) observable with nonzero signal

How to separate the signal/background?

A. Bzdak et al. Phys. Lett. B 726 239243 (2013) S. A. Voloshin et al. Nucl. Phys. A 931 992996 (2014) W. Wu et al. Phys. Rev. C 103, 034906 (2021)

The 27th Nordic Particle Physics Meeting

Slope in Pb-Pb collision at 5.02 TeV with the ALICE detector

$r_{\Delta v_2}^{\text{Norm}(\text{ALICE})} \approx r_{\Delta v_2}^{\text{Norm}(\text{CMS})}$

Wenya Wu

The 27th Nordic Particle Physics Meeting

 \checkmark Linear dependences between $\Delta v_2/\langle v_2 \rangle$ and A_{ch} in the left figure \checkmark In the middle figure, $r_{\Delta v_2}^{Norm}$ is consistent with $r_{\Delta v_3}^{Norm}$ within uncertainties

W. Wu arXiv:2212.04137

- **Resonance decay** (a,b,c): paired particle emitted at the same point •
- String fragmentation model (A,B,C): hadronization process with a string consisting of q and \bar{q} endpoints

CMW LCC:

Wenya Wu

When selecting events with a specific A_{ch} , in practice, one preferentially applies nonuniform $p_T(\eta)$ cuts on the charged particles **A manifestation of LCC!**

	$ ho^0 ightarrow \pi^+\pi^-$		String frag.	
Туре	unpaired (case b, c)	paired (case <i>a</i>)	unpaired (case B, C)	paired (case A)
Mother $p_{\rm T}$	0.75	0.97	0.94	1.41
Mother $ \eta $	1.17	0.53	2.15	2.12
Daughter $p_{\rm T}$	0.59	0.64	0.68	0.74
Daughter $ \eta $	0.41	0.39	0.41	0.40
Daughter $ \Delta \eta $	1.27	0.48	1.03	0.69

 $A_{ch} < 0(>0) \rightarrow B(C)$ and $b(c) \uparrow \rightarrow unpaired neg(pos) particles \uparrow \rightarrow \langle p_T^- \rangle < \langle p_T^+ \rangle (\langle p_T^- \rangle > \langle p_T^+ \rangle)$

W. Wu et al. Phys. Rev. C 103, 034906 (2021) A. Bzdak et al. Phys. Lett. B 726 239243 (2013) C. Wang, W. Wu et al. Phys. Lett. B 820 136580 (2021)

CME LCC: S. Schlichting et al. Phys. Rev. C 83, 014913 (2011)

The 27th Nordic Particle Physics Meeting

- BW+LCC \rightarrow boost paired particles at a same point
- Blast wave model (thermal expansion) adding **finite** LCC effect can reproduce the ALICE experimental measurements of CMW(left) and CME(right) together -> measurements on both CMW and CME are dominated by the LCC background
- Observables are very sensitive to CMW/CME signal as BW+LCC (adding signal) simulation

Blast wave with LCC reproduces experiemntal results of CMW/E

WY. WU et al. <u>arXiv:2211.15446</u> (2022) 9 /12

The 27th Nordic Particle Physics Meeting

Event-shape engineering constrains CMW fraction

- Δ Int. Cov. vs. v_2 : finite intercept **Background (BW+LCC)** Δ Int. Cov. vs. v_2 : zero intercept

- \checkmark Classify events corresponding to q_2
- ✓ Sensitive to v_2 of collision ($q_2 \propto v_2$)
- ✓ Successfully used for CME

ESE technique

J. Schukraft et al. Phys. Lett. B 719 394398 (2013) ALICE Collaboration Phys. Lett. B 777, 151162 (2018) CMS Collaboration Phys. Rev. C 100, 064908 (2019)

of Δ Int. Cov. changes with $v_2 \rightarrow$ indication of a large background ✓ Linear fit: $F(v_2) = a \times v_2 + b$

$$f_{CMW} \equiv \frac{b}{a \times \overline{\langle v_2 \rangle} + b}$$

 \checkmark Parameters *a* and *b* are extracted from the $F(v_2)$ fit to Δ Int. Cov. $\checkmark \langle v_2 \rangle$ averaged over all intervals of q_2 $\checkmark f_{\rm CMW}$ consistent with 0 within uncertainties

Value of f_{CMW} extracted in 10-60% centrality, $f_{\text{CMW}} \sim 0.338 \pm 0.084 \text{(stat.)} \pm 0.198 \text{(syst.)}$

The 27th Nordic Particle Physics Meeting

- If the LCC effect is recognized as one of the most important background effect in the studies of chiral anomalous effects
- $\checkmark \Delta v_2 A_{ch}$ method: The normalized slope $r_{\Delta v_2}^{Norm}$ is consistent with $r_{\Delta v_2}^{Norm}$. within uncertainties implying that CMW signal is consistent with zero
- ✓ ESE method: First measurement of the CMW fraction with ESE method in Pb-Pb collisions, $f_{\rm CMW}$ is consistent with zero within uncertainties (There is no statistical significance to observe the CMW signal)

Wenya Wu

Thanks for your attention!

Differential covariance: $\langle v_2^{\pm} q_3 \rangle - \langle q_3 \rangle_1 \langle v_2^{\pm} \rangle$

- Averaged charge around specific particle
- Reflect the LCC effect in CMW measurements

 $\begin{cases} 1.0 \\ 80.0 \\ 3^{1} \sqrt{5} \\ 6^{3} \\ 0.06 \\ 0.04 \end{cases}$ 20.0^{2}

The 27th Nordic Particle Physics Meeting

Back up : differential 3-particle correlator — probe LCC

