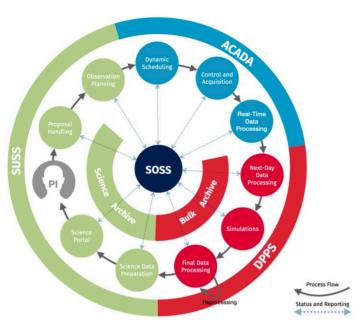


## The Calibration Pipeline of the Data Processing and Preservation System of CTAO

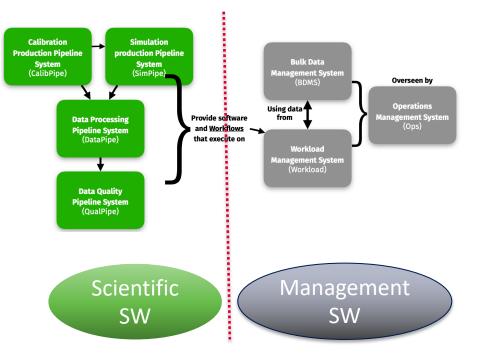
Mykhailo Dalchenko

Swiss CTA Day, Zurich, 14/12/2022

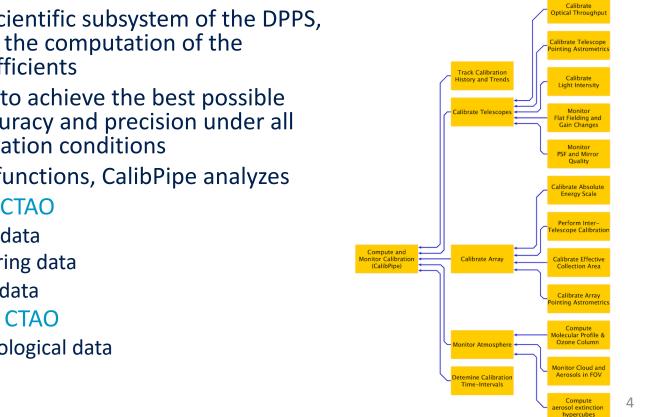

#### **DPPS in a nutshell**



#### **DPPS objectives**


- Ensure preservation, processing and delivery to scientific user of low-level data
  - applies to both simulated and observed data
  - data products must be traceable and reproducible
- Provide monitoring and quality of the data products
  - with periodic reprocessing to ensure highest data quality
- Provide user interface to the DPPS sub-systems to the SOSS team
  - Including quality metrics and reports on the provided services

#### **CTAO Science Data LifeCycle**



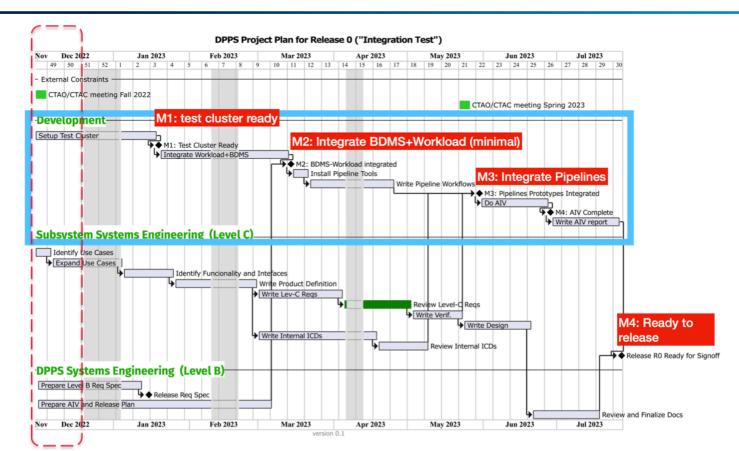

#### **General DPPS architecture**

- DPPS is a data-centered system
  - The approach to its SW architecture must be data-driven
    - The main task of DPPS is to perform data transformation
      - With a large side task of longterm data storage
  - The data transformations (and reduction/augmentation) are done step-by-step and referred as pipelines
    - Execution of a (combination of) pipeline is a workflow








- CalibPipe is a scientific subsystem of the DPPS, responsible for the computation of the calibration coefficients
- CalibPipe aims to achieve the best possible instrument accuracy and precision under all kinds of observation conditions
- To perform its functions, CalibPipe analyzes
  - internal to CTAO
    - physics data
    - monitoring data •
    - service data
  - external to CTAO
    - meteorological data

#### **Calibration Pipeline Product Definition**



#### **DPPS Schedule towards Rel. 0**





### **DPPS Rel.0 deliverables: Use Cases**



- Generate a small set of Simulated R0 data
- Run a data processing workflow (R0-DL2) on the data produced above.
  - No (major) new functionality for DataPipe, SimPipe, Workload
  - BDMS needs minimal functionality
    - just store and retrieve, query
      - could run on a single DC
    - preservation (replication from one to another DC)
  - CalibPipe
    - molecular atmosphere calibration
    - molecular profile exchange with SimPipe (interface development)
  - DataPipe
    - Run basic data quality checks on the final output
      - minimal check that data is ok, not a full science metrics

## **Calibration Pipeline Status: organization**



- An early start helps to advance the project
  - The first round of CTAO DPPS product requirements (Level-B) revision is done for the molecular atmosphere
    - Second round is planned for Jan. 2023
  - The first revision of the Use Case Registry is ready
  - The Calibration Pipeline Concept Document is drafted
    - Work in progress, to be completed by the end of the year
  - The interfaces description is ready
    - Still need to implement a formal document, work in progress
  - The testing and integration environment is ready
    - Initial CI, QA, and documentation pipelines in place
      - The configuration will be updated upon the availability of the DPPS-wide one

## **Calibration Pipeline Status: code**



- Molecular profiles code is implemented
  - The main functionality is ready, small updates required on packaging and distribution/deployment
    - External SW (GDAS routines) expected to be re-packaged on our request
- The interface between the Calibration Pipeline and Simulation Pipeline is agreed upon (through the WMS)
  - Data Model is ready
    - implementation and integration testing are to be done
- The interface between WMS and CalibPipe is being investigated
  - Common to all pipelines task, lead by CalibPipe developers
  - Different workflow description languages are investigated
    - CWL, snakemake, in-house YAML dialects are being evaluated
- Muon Rings analysis implemented
  - Algorithms might require revision
    - Discussion with ACE experts ongoing

### **Calibration Pipeline Status: extras**



- Database studies for Calibration DB
  - Comparison studies done
  - DB prototype is implemented and documented
- A new, auxiliary pointing monitoring method based on physics data stream is developed
  - The code is ready, the publication on new method is in review
  - Tests on the LST-1 data show good results
  - Ready to be integrated with the CalibPipe

### **Calibration Pipeline Status: to do**



- On a project documentation side:
  - Finalize the Calibration Pipeline Concept Document
  - Detailed Level-C requirements decomposition
  - Formal interface documentation
- On a SW development side
  - Calibration Data Model specification and implementation
    - In relation to the use cases specified above
    - Database core is ready with corresponding serializers/deserializers
      - Adding new tables is straightforward
    - Interface to WMS implementation

#### **CH planned and allocated contribution**



#### **Total CTAO-CH planned contributions:**

|                                |              | 2021       | 2022    | 2023    | 2024    | 2025    | 2026   | 2027  | 2028 | Tot SERI | Tot done + I | KC from Inst | Tot in table | Institute      | CTAO CB        |
|--------------------------------|--------------|------------|---------|---------|---------|---------|--------|-------|------|----------|--------------|--------------|--------------|----------------|----------------|
| Primary Interest task          |              | FTE (SERI) |         |         |         |         |        |       |      |          |              |              | SERI+Inst    |                | SERI+Inst      |
| P07.2 LST System Engineer      |              | 0.4        | 1       | 1       | 1       | 1       | 0.6    | 0     | 0    | 5.00     | 2.25         | 5.25         | 12.50        | DPNC           | 5.44           |
| P07 SiPM R&D                   |              | 1.0        | 1       | 1       | 1       | 1       | 0      |       |      | 5.00     |              |              | 5.00         | DPNC - off CB  | 0              |
| P07.2.1 LST + P07.4.1 SST TCS  |              | 1.2        | 1.2     | 1.2     | 1.2     | 1.2     | 0.26   | 0     | 0    | 6.26     | 2.1          | 0            | 8.36         | Astro          | 5.89           |
| P06.5.8 DPPS CalibPipe         |              | 1.0        | 4       | 4       | 3       | 1       | 0.5    |       |      | 13.50    |              |              | 13.50        | DPNC           | 13.5           |
| P06.5.2 DPPS Bulk Archive      |              | 0.0        | 0.5     | 0.5     | 0.5     | 0.5     | 0.5    | 0     | 0    | 2.50     |              |              | 2.50         | Astro          | 5              |
| P06.5.2 DPPS Bulk Archive      |              | 0.0        | 0.5     | 0.5     | 0.5     | 0.5     | 0.5    | 0     | 0    | 2.50     |              |              | 2.50         | ETHZ           |                |
| P06.5.9 DPPS Data Quality      |              | 0.3        | 1       | 1.5     | 1.5     | 1       | 0.7    |       |      | 6.00     |              |              | 6.00         | DPNC           | 6              |
| P06.4.4 ACADA ADH              |              | 1.8        | 1.8     | 1.8     | 1.8     | 1.4     | 0      |       |      | 8.60     | 2.3          |              | 10.90        | Astro          | 16.50          |
|                                |              | 1.0        | 1       | 1       | 1       | 0.9     | 0      |       |      | 4.90     | 0.7          |              | 5.60         | ETHZ           |                |
| P06.11.4 Off Site Data Centre  |              | 0.3        | 1       | 1       | 1       | 1       | 0.7    |       |      | 5.00     |              |              | 5.00         | EPFL           | 6              |
|                                |              | 0.0        | 0.2     | 0.2     | 0.2     | 0.2     | 0.2    |       |      | 1.00     |              |              | 1.00         | CSCS/EPFL      |                |
| 171                            |              | 7.0        | 13.2    | 13.7    | 12.7    | 9.7     | 3.96   | 0     | 0    | 60.26    | 7.35         | \$.25        | 72.9         |                | 58.33          |
| 107.8                          | Cost (Euro)  | 497000     | 937200  | 972700  | 901700  | 688700  | 281160 | 0     | 0    | 4278460  | 521850       | 372750       | 5173060      |                | CTAO FTT (Even |
| 568                            | ti Cast (CH) | 857000     | 1616000 | 1676000 | 1556000 | 1196000 | 490200 | 0     | 0    | 7391200  |              |              | 8918200      |                | 4141430        |
| HW DC (CHF)                    |              | 50000      | 568000  | 568000  | 568000  |         |        | DC HW |      | 1754000  | THE SERIE 20 | 121-2024(0+1 | Tox SERI 20  | 21-2026 [()+F] | CTAD Cash (Eur |
| LST CF/Travels/shifts/CTAO Day |              | 50000      | 80000   | 80000   | 80000   | 80000   |        |       |      | 370000   | 8484000      |              | 10250200     |                | 620000         |
| Cash (CHF)                     |              | 53000      | 132000  | 132000  | 418000  |         |        |       |      | 735000   |              |              |              |                |                |



#### **Summary and Outlook**



- DPPS Project is getting up to speed
  - Decision on the content of the DPPS Rel.0 has been made
  - Detailed planning is provided
- Calibration Pipeline Project has successfully ramped up
  - Basis of the PM documentation is available
  - Calibration Pipeline code is in a good shape
    - Have all the main blocks for Rel.0 already and some extras
- FTE accounting is in accordance to the CH contribution planning



# BACKUP

## Time spent report details, CalibPipe



- 2021:
  - Project coordination: 0.25 FTE
  - Project design: 1.25 FTE
- 2022:
  - Project coordination: 0.25 FTE
  - DB studies: 0.75 FTE
  - Project management documentation: 1.0 FTE
  - SW development: 1.0 FTE

Team composition: Mykhailo Dalchenko (team leader) **Georgios Voutsinas** (lead developer) **Gregoire Uhlrich** (developer) **Gabriel Emery** (developer) Antonio Di Pilato (developer)