Broad band modelling of Blazars:

 a tool to understand the physics of relativistic jets.Andrea Tramacere

astronomy department university of Geneva

- current status of the modeling
- phenomenological signatures hinting for complex scenarios
- self-consistent modeling and degeneracy
- connection of micro to macro physics

Hadronic models

can explain IceCube results for Sy2 NGC 1068
but also γ-NLS1/CSS have a corona and possible signatures of winds/outflows, hence such a model might produce neutrinos in the gamma-ray opaque regions of jetted AGNs

Neronov\&Semikoz 2020
for pp applied to pc scale of relativistic jets
propagating through circumnuclear medium of the AGN
see Teresa Talk/ IceCube results 2022

Eichmann+2022, see also Murase papers

Padovani+ 2017
Mrk 421

Mrk 4212013 Acciari+ 2020

CW:soft lag, when the flare is observed at frequencies where the higher energy variability occurs more rapidly than at lower energy

CCW:In contrast, when observed at frequencies for which the acceleration and cooling timescale are almost equal, the loops are expected to be counterclockwise with a possible hard lag
single episode, single process Katarzyński+ 2005

$t_{\text {var }}$ depends on $t_{\text {acc, }} \mathbf{t}_{\text {cool }}$. and properties of radiative process plus geometry, trends among different bands bring signatures of different processe.

MW variability and correlation studies of Mrk 421 during historically low X-ray and y-ray activity in 2015-2016

$$
\text { Magic coll. } 2020
$$

> long terms depends on jet
feeding processes and jet structure:
AD instabilities ,BH spin, jet geometry

Radio- γ delay in Mrk 421 (months)

W. Max-Moerbeck+ 2014
B. Pushkarev+ 2010

Ghisellini+1985
McCray,R. 1968

long/short term variability: jet feeding/powering

BZ process
mechanism to work, the system requires two ingredients: - a central spinning black hole and

- a surrounding disk of plasma with a strong poloidal magnetic field. Once accretion onto the black hole has begun, the magnetic field lines embedded in the disk, due to the frame dragging, twists the field lines into following the rotation of the black hole.

provides the

B gradient to accelerate the jet
credit picture Sera Markov

Disk, differential rotation, B\&P wind plus plasmoids

Galev\&Rosen 1979

Field toroidally-dominated

$$
B_{\phi} \gg B_{z}
$$

Frame dragging
and differential rotation disk variability
(c)

provides content of pairs during magneti reconnection plus pre-acceleration of particles

standard picture: cooling break scenario
The peak frequency dynamic range, for LSP, is low, this might hide the emitters evolution

Ahnen+ $2015(\mathrm{MAGIC}) \log _{10}(\mathrm{E})\left[\mathrm{eV}{ }^{\text {FSRQ PKS }} 1441+25\right.$

standard picture: cooling break scenario
The peak frequency dynamic range, for LSP, is low, this might hide the emitters evolution
Ahnen+ 2015 (MAGIC) $\log _{10}(\mathrm{E})\left[\mathrm{eV}^{\text {FSRQ PKS }} 1441+25\right.$

even though some peak shift are observed...

HBLs

Tramacere +2009

Es (keV)

Does HBLs provide the most efficient class to study the acceleration?
Is it the blazar sequence: the larger the peak luminosity the lower the luminosity a signature of the physics, or is there a bias from considering only the cooling?
mrk 501, quiescent sate iXPE recent results (nature 2022)

IC pol<<S pol
(Bonometto+ 70, Pairson\&Romani 2019)

- polarization ~ 10\%<< ~70\% from ordered fields
- hints for turbulence impacting on B structure
- multi-zone vs single zone
- B orthogonal to the jet axis
- hadronic-leptonic discrimination (but VHE spectral signatures are mandatory to break degeneracy)
- intrinsic difference between classes

3C279 (Zhang 2017)
3C279

3C279 (nature Fermi-LAT 2010)

hint from phenomenology

EHT Nature 2021

interaction region between an accretionpowered outflow and the fast jet spine, which is potentially powered by the black hole spin

Shukla and Mannheim, Nature
Communications 2020
RSITE

Radio morphology and radio-gamma delays
Kovalev+ 2020 break occurs at MD~KD, Г saturates

here we add adiabatic cooling
($\mathrm{t}=$ time elapsed from the expansion) $\left|\dot{\gamma}_{a d}\right|=\frac{1}{3} \frac{V}{V} \gamma=\frac{R(t)}{R(t)} \gamma=\frac{\beta_{\text {exp }} c}{R(t)} \gamma$

Parker 2006, Stawartz\&Petrosian 2008 Tramacere+2011
injection term
$L_{\text {inj }}=V_{\text {acc }} \int \gamma m_{e} c^{2} Q(\gamma, t) d \gamma(\mathrm{erg} / \mathrm{s})$

Turbulent magnetic field

$$
W(k)=\frac{\delta B\left(k_{0}^{2}\right)}{8 \pi}\left(\frac{k}{k_{0}}\right)^{-q}
$$

momentum diffusion term

$$
D_{p} \approx \beta_{A}^{2}\left(\frac{\delta B}{B_{0}}\right)^{2}\left(\frac{\rho_{g}}{\lambda_{\max }}\right)^{q-1} \frac{p^{2} c^{2}}{\rho_{g} c}
$$

UNIVERSITÉ DE GENEVE

Tramacere+ 2022 (see also Boula 2022)

Disk

flaring site

NIVERSITÉ Genivis JetSeT

- duration $\sim 3 \times 10^{7} \mathrm{~s}$ (blob frame)~ 11 d obs
$-t_{\text {exp }}=1 \times 10^{7} \mathrm{~s}$
- $\beta_{\text {exp }}=0.1 \mathrm{c}$

self-consistent approach

UNIVERSITÉ
DE GENEVE

Tramacere+ 2022

Parameter	Value	
A	$12.5{ }_{-0.013}^{+0.5} \times 10^{3} \mathrm{Jy} \mathrm{cm}^{2} \mathrm{~s} / \mathrm{ph}$	$\mathbf{e x n}^{-\left(t-\Delta_{t}\right) / t_{\mathrm{decay}}^{*}}$
$t_{\text {rise }}$	$\lesssim 1$ day	
$t_{\text {decay }}$	$126.5_{-1.3}^{+1.3}$ days	$S(t)=A \frac{1}{1}$
Δt	$37.58_{-0.13}^{+0.13}$ days	$1+\exp ^{-\left(t-\Delta_{t}\right) / t_{\text {rise }}}$
$F_{\text {background }}$	$0.188_{-0.0004}^{+0.008} \mathrm{Jy}$	

Connection with MQ

- Transient jets with $\mathrm{BH} \sim \mathrm{M}_{\text {Sun }}$, and complex interaction between accretion and jet formation. Crucial to understand processes of jets at AGN scales, and for understanding mechanisms such as BZ
- CTA sensitivity will allow discriminate better between leptonic and lepto-hadronic models
- Synergy with SKA will have strong implication on jets energetic and Magnetic field topology
- CTA+SKA Jet feeding (BZ,etc)
- Recent iXPE measurements confirm pol. angle parallel to the jet axis as in the case of blazars!

self-consistent approach

Ep-vs-curvature

Tramacere+2011

Curvature is at acceleration

dominated regime!

Lp-vs-curvature

Tramacere+2011

JetSeT

connection with GRBs

 DE GENEVE
see satoshi

Massaro, Grindlay, Paggi 2010

prompt spectral features

- b~[0.6-0.8] compatible with equilibrium, hinting for larger magnetic fields and shorter t_acc compared to blazars

Tramacere 2011

recent iXPE polarization measurements with PD~10\% similar to Mrk 501 (see Hancheng)

connection with GRBs

prompt $\quad L_{p, i s o} \sim E_{p}{ }^{\alpha}$

- index of $\alpha \sim 2$ is compatible with B as main driver
- index of $\alpha \sim 1.5$ is compatible with $\gamma_{3 p}$ increasing keeping $\mathrm{N}\left(\gamma_{3 p}\right)$ constant

 DE GENEVE

connection with GRBs

prompt $L_{p, i s o} \sim E_{p^{\alpha}}$

- $b \sim[0.6-0.8]$ compatible with equilibrium, hinting for larger magnetic fields and shorter t_acc compared to blazars
- index of $\alpha \sim 2$ is compatible with B as main driver
- index of $\alpha \sim 1.5$ is compatible with $\gamma_{3 p}$ increasing keeping $\mathbf{N}\left(\gamma_{3 p}\right)$ constant

CTA can help in filling the gap between macro and micro physics
But, we need to have MW/MM simultaneous observations
in particular X-ray (possibly with polarimetry)
we need to look at jets in different environments

