

cherenkov telescope array

Recent observation of LHAASO J2108+5157 with LST

BALBO MATTEO (on behalf of Jakub Jurysek et al.)

-

Where are the Galactic PeVatrons?

Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 y-ray Galactic sources

LHAASO Source	Possible Origin	Туре	Distance (kpc)	Age (kyr) ^a	$L_s (erg/s)^b$
LHAASO J0534+2202	PSR J0534+2200	PSR	2.0	1.26	$4.5 imes10^{38}$
LHAASO J1825-1326	PSR J1826-1334	PSR	3.1 ± 0.2^{d}	21.4	$2.8 imes10^{36}$
	PSR J1826-1256	PSR	1.6	14.4	$3.6 imes10^{36}$
LHAASO J1839-0545	PSR J1837-0604	PSR	4.8	33.8	$2.0 imes10^{36}$
	PSR J1838-0537	PSR	1.3^{e}	4.9	$6.0 imes 10^{36}$
LHAASO J1843-0338	SNR G28.6-0.1	SNR	9.6 ± 0.3^{f}	$< 2^{f}$	_
LHAASO J1849-0003	PSR J1849-0001	PSR	7^{g}	43.1	$9.8 imes 10^{36}$
	W43	YMC	5.5^{h}	—	—
LHAASO J1908+0621	SNR G40.5-0.5	SNR	3.4^{i}	$\sim 10-20^{j}$	_
	PSR 1907+0602	PSR	2.4	19.5	$2.8 imes10^{36}$
	PSR 1907+0631	PSR	3.4	11.3	$5.3 imes 10^{35}$
LHAASO J1929+1745	PSR J1928+1746	PSR	4.6	82.6	$1.6 imes10^{36}$
	PSR J1930+1852	PSR	6.2	2.9	$1.2 imes 10^{37}$
	SNR G54.1+0.3	SNR	$6.3^{+0.8}_{-0.7}$ d	$1.8 - 3.3^k$	_
LHAASO J1956+2845	PSR J1958+2846	PSR	2.0	21.7	$3.4 imes10^{35}$
	SNR G66.0-0.0	SNR	2.3 ± 0.2^{d}	—	_
LHAASO J2018+3651	PSR J2021+3651	PSR	$1.8^{+1.7}_{-1.4}$	17.2	$3.4 imes10^{36}$
	Sh 2-104	H II/YMC	$3.3\pm 0.3^{m}\!/\!4.0\pm 0.5^{n}$	—	—
LHAASO J2032+4102	Cygnus OB2	YMC	1.40 ± 0.08^{o}	_	_
	PSR 2032+4127	PSR	1.40 ± 0.08^{o}	201	$1.5 imes10^{35}$
	SNR G79.8+1.2	SNR candidate	—	—	—
LHAASO J2108+5157	_	_	_	_	_
LHAASO J2226+6057	SNR G106.3+2.7	SNR	0.8^{p}	$\sim 10^p$	_
	PSR J2229+6114	PSR	0.8^{p}	$\sim 10^p$	$2.2 imes 10^{37}$

1st science results derived from LST data! (Submitted to A&A) 3

LHAASO J2108+5157

- Discovery and detailed analysis (LHAASO col., <u>2021a</u>, <u>b</u>)
- **Unidentified** UHE gamma-ray source and Gal. PeVatron candidate
- 95% UL on extension: 0.26 deg
- **Possible counterparts:**
 - **X-ray:** No counterpart (Swift-XRT)
 - **HE**: 4FGL J2108.0+5155 (0.13 deg from the UHE source)
 - **VHE**: No counterpart
- No PWN/ATNF pulsar within 1 deg 🗿
- Two young stellar clusters in the region. Presence of nearby molecular clouds.

LHAASO skymap at energies above 100 TeV (LHAASO col. 2021a)

LST-1 results: aiming for detection

- Theta² distribution in three blindly chosen energy bins
- Use of three reflected background positions (OFF regions) + the LHAASO reported coordinates (ON region)
- Gammaness and theta² cuts optimised on Crab detection significance
- A hint of VHE emission at E>3 TeV with **3.7 sigma Li&Ma significance** (S/B 46%)

Theta² distribution

The squared angular distance between the reconstructed event directions and the source

LST-1 results: 1D spectral analysis

- 1D spectral analysis in Gammapy v0.19, point-like source assumption
- Power-law spectral model of LST-1 data between 100 GeV - 100 TeV
- Joint likelihood fit of the LST-1 data and LHAASO flux-points using Power-law with Exponential Cutoff (ECPL) spectral model
- Hard spectrum in the TeV range

Data	Spectral	N_0
	model	$[\times 10^{-14} \text{ cm}^{-2}\text{ s}]$
LST-1	PL	8.02 ± 3
LST-1 + LHAASO	ECPL	7.57 ± 4

* Reference energy for PL and ECPL: $E_0 = 1$ TeV

XMM-Newton ToO observation

- Target of opportunity observation, **13.6** ks, two energy bands: 0.5-2 keV, 2-7 keV
- No detection
- **Unknown source distance**: Two sets of ULs derived for different source distances
 - Absorbed (the source is distant)
 - Unabsorbed (the source is nearby)

Fermi-LAT data analysis

- Dedicated binned analysis of 12-year *Fermi*-LAT data
- Closest source 4FGL J2108.0+5155, a counterpart? very soft spectrum
- **New hard spectrum source** (HS, 4sigma) dominating emission above ~4 GeV, located at the edge of the 95% extension limit of the UHE emission
- Likelihood fit adding HS in the model -> new spectral shape for 4FGL J2108.0+5155
- Superposition of two point-like sources: one brighter and softer, the other fainter but harder

- Small green circle: 95% position uncertainty of the UHE source
- Large green circle: 95% UL on the UHE source extension
- Known 4FGL-DR3 sources are shown in magenta
- 4FGL J2108.0+5155 is shown in red
- new HS source is white

Multi-wavelength SED

4FGL J2108.0+5155 - a pulsar hypothesis

- Parkinson (2016) classified the 3rd Fermi catalog counterpart
- **Problem:** the source is not detected in radio/X-ray
- There is a population of radio quiet pulsars with SED dominated by HE/VHE emission (e.g. Geminga)

Sub-exponential cutoff power-law phenomenological model compared with 2nd Fermi PSR catalog (Abdo+2013) -> spin-down power of tentative pulsar constrained $(\bar{E} = 10^{34-37} \text{ erg/s})$

TeV emission - PWN/TeV halo object?

- when the pulsar starts leaving SNR and accelerated electrons are no longer confined in PWN
- the pulsar

- Model of relativistic electrons emission calculated in Naima package (Zabalza 2015)
- Inverse Compton scattering on CMB and FIR photon fields
- **Problem:** Strong X-ray ULs require low magnetic field (< 1 µG)
 - Too low for a typical PWN ($\sim 1 100 \mu$ G)
 - Comparable with B in **TeV halo** around Geminga (Liu et al. 2019)

TeV emission - PWN/TeV halo object?

- Comparison of TeV emission with population of TeV PWNe/TeV halos (<u>Abdalla+2017</u>, 00) following the pulsar hypothesis
- TeV extension for PSR of given $\dot{E} \gtrsim 10 \text{ pc}$
- LHAASO ULs on extension 0.26 deg => distance \geq 2

TeV luminosity constrained by Galactic geometrical reasons and possible source extension consistent with limits on spin-down power from Fermi-LAT, further constraints on È $= 10^{35-37} \text{ erg/s}$

TeV emission - PWN/TeV halo object?

Comparison of TeV emission with nonulation of TeV PWN puls

10³⁷

Spin-down Power \dot{E} [erg s⁻¹]

TeV

LHA

10³⁶ ł

10³⁵

 $\begin{array}{c} \mbox{Free} 10^{34} \\ \mbox{I}0^{31} \\ \mbox{I}0^{31} \\ \mbox{I}0^{31} \end{array}$

10³⁰

10²⁹

 10^{35}

10³⁶

- Total energy in electrons $E_{tot} = 10^{45} (d/kpc)^2 erg$
- IC electron cooling (Moderski+2005)

 $\tau_{\rm yr} = E_e / (dE_e / dt) \approx 3.1 \cdot 10^5 U_{\rm rad, eV \, cm^{-3}}^{-1} E_{e, {\rm TeV}}^{-1} f_{\rm KN}^{-1}$

 $f_{\rm KN} \approx (1+b)^{-1.5} \approx (1+40E_{\rm e,TeV}kT_{\rm eV})^{-1.5}$

10³⁸

10³⁹

- Estimation of total energy released by a pulsar: $E_{psr} = \dot{E} t_{cool}$ For $\dot{E} = 10^{35-37}$ erg/s => $E_{psr} = 10^{47-49}$ erg.

The tentative pulsar we see in the GeV range could provide the electrons with enough energy to emit the observed IC if closer than ~10 kpc.

Energetics

Cooling time of 100 TeV electrons: 30 kyr

$= 10^{35-37} \text{ erg/s}$

Hadronic scenario of emission

- An old SNR? **Two molecular clouds** spatially coincident with the source $(d_1 = 3.1 \text{ kpc}, d_2 = 2.0 \text{ kpc})$ Photon index -3.2 too soft compared to old
- **Two stellar clusters** in the direction to the source: Kronberger 80 (d = 7.9-13.7 kpc) and Kronberger 82 (unknown distance)

- Interaction of protons accelerated in old SNR/ stellar cluster with one of the molecular clouds
- Total energy in accelerated protons for both clouds < 10⁴⁷ erg
- **Problem:** very hard proton spectrum with sp. index 0.5±0.3 is inconsistent with diffusive shock acceleration
 - Can be explained if only VHE protons can escape the acceleration region (Gabici&Aharonian 2007), or if gas clumps are present within the shell of SNR (Gabici&Aharonian 2014)

Problem: origin of HE gamma-ray emission

SNRs (Yuan+2012)

Summary and conclusions

- Data from LST-1, LHAASO, XMM-Newton and Fermi-LAT combined to provide a multi-wavelength information about unidentified source LHAASO J2108+5157
- **Gamma-ray pulsar + PWN/TeV halo:**
 - Self-consistent leptonic scenario of emission explaining both prominent peaks in the SED
 - Low magnetic field required by X-ray ULs seems to be consistent with TeV halo hypothesis

Interaction of relativistic protons with molecular clouds:

- Acceleration site unknown
- Hard proton spectral index 0.5±0.3 needed to explain the emission can be explained if gas clumps are present in a SNR shell, or if only the most energetic protons can escape the acceleration region

