REQUIREMENTS for Zero-Degree Ion Selection in TRANSFER

Wilton Catford University of Surrey, UK

& SHARC collabs

USING RADIOACTIVE BEAMS in INVERSE KINEMATICS

What would an ideal zero-degree device achieve?

- identification of reaction products
- physical separation of reaction products of interest, from the beam
- physical separation of reaction products of interest, from fusion-evap
- physical separation of isobaric beams or other beam contaminants
- large enough angular acceptance to pick up sequential decay products
- excellent angular resolution to allow kinematic reconstruction *missing-p*
- to avoid compromising the placement of gamma-ray detectors
- to be consistent with good coverage by other detectors around target
- to have sufficient flight path to allow for the use of TOF methods
- to be as transportable as the rest of the set-up, to optimise exploitation

What are we prepared to lose? What is the compromise?

- accept limited mass identification of reaction products?
- forego physical separation?
- tolerate limited angular acceptance? angular resolution?
- relax the requirement of portability?

OUR EXPERIMENT TO STUDY ²⁵Ne $d_{3/2}$ | ²⁴Ne($d_{3/2}$ |

²⁴Ne(d,pγ) N=16 replaces broken N=20

Schematic of the TIARA setup. A beam of 10⁵ pps of ²⁴Ne at 10.5A MeV was provided from SPIRAL, limited to 8π mm.mrad to give a beam spot size of 1.5-2.0 mm. The target was 1.0 mg/cm² of (CD₂)_n plastic. The TIARA array covered 90% of 4π with active silicon.

W.N. Catford et al., Eur. Phys. J. A25, Suppl. 1, 245 (2005).

Requiring Vamos FP Plastic

Vamos+Exogam

~ 10 A.MeV

²⁶Ne (d,p) ²⁷Ne

Nucleon transfer by (d,p) at 5 MeV/u at ISAC2

Prototype of new type of experiment for us – where the states are so close together in this odd-odd nucleus that we will need to GATE on gamma transitions in order to separate the different final states

At ISAC2 we have used the **isotone** of ²⁴Ne namely ²⁵Na as the projectile.

The new array is **SHARC** (Ch. Aa. Diget et al., York UK, Surrey, LPC Caen, TRIUMF, TIGRESS, CSM, LSU, ...) ... which is compact and fits inside **TIGRESS**

We used up to **3 x 10⁷ pps ²⁵Na**

at 5.00 MeV/u.

WILTON CATFORD, SURREY

SHARC

Schematic

²⁵Na(d,p)²⁶Na at 5.00 MeV/A: proton-neutron coupling

SHARC chamber (compact Si box)

BEAN

Bank of 500 preamplifiers cabled to TIG10 digitizers

TIGRESS

WILTON CATFORD, SURREY

TIGRESS

Preliminary Analysis: E vs θ

ZERO DEGREE = SPECTROMETER

RESULTS from TIARA/MUST2 Nov2007

ZERO DEGREE = SCINTILLATOR

ZERO DEGREE = SPECTROMETER

²⁶Ne(d,p)²⁷Ne 10 A.MeV

RESULTS from TIARA/MUST2 Nov2007

ZERO DEGREE = SCINTILLATOR

RESULTS from SHARC Aug2009

MISSING MOMENTUM using ²⁶Ne beam to study (d,p) with VAMOS

Figure 4.20: Measured kinematics in the Barrel after angle corrections. The red and green lines are kinematics calculations for reaction channels expected in the data.

Figure 5.2: Missing momentum spectrum for ²⁶Ne coincidences, determined from the measurements in TIARA and VAMOS using Equation 5.2.

What would an ideal zero-degree device achieve?

- identification of reaction products
- physical separation of reaction products of interest, from the beam
- physical separation of reaction products of interest, from fusion-evap
- physical separation of isobaric beams or other beam contaminants
- large enough angular acceptance to pick up sequential decay products
- excellent angular resolution to allow kinematic reconstruction *missing-p*
- to avoid compromising the placement of gamma-ray detectors
- to be consistent with good coverage by other detectors around target
- to have sufficient flight path to allow for the use of TOF methods
- to be as transportable as the rest of the set-up, to optimise exploitation

What are we prepared to lose? What is the compromise?

- accept limited mass identification of reaction products?
- forego physical separation?
- tolerate limited angular acceptance? angular resolution?
- relax the requirement of portability?