The ElectroMagnetic Mass Analyser EMMA, a Recoil Mass Spectrometer for ISAC-II

Barry Davids TRIUMF

ISAC-II at TRIUMF Transverse Emittance

High Quality RIB's with A < 150, Max. Energy \geq 6.5 A MeV

Beam Properties Time Domain

Nuclear Structure at the Extremes

- Single-particle structure at extreme N/Z values, particularly at and near closed shells (single-nucleon transfer)
- Pairing interactions in N ~ Z nuclei via (p,t), (³He,p), (d, α)
- Production and decay studies of highly neutron-rich nuclei via multineutron transfers e.g. (¹⁸O,¹⁵O)
- Proton radioactivities above tin via ⁵⁶Ni-induced fusion-evaporation reactions
- High-spin (including isomers) physics in both neutron-deficient and neutron-rich nuclei via fusion-evaporation reactions

Nuclear Astrophysics

- Time-reversed (α, p) reactions
- Spectroscopy of particle-unbound states
- Q_{β} values, lifetimes, β -delayed neutron emission probabilities
- Particle-decay branching ratios

Defining the Problem I

- In transfer and fusion-evaporation reactions, spectroscopic information obtained from detecting light ejectiles and gamma rays
- Interpretation of spectra complicated or rendered impossible by background from other channels
- For transfers with light ejectile detection, kinematic lines obscured by diffuse background
- For fusion-evaporation, gamma spectra contaminated by lines from other nuclei, frequently produced much more copiously than the nucleus of interest
- Direct identification of residual nuclei required

Defining the Problem II

- Use of particle detectors to directly detect recoils complicated by 2 problems:
 - In both fusion-evaporation and transfer reactions in inverse kinematics, heavy recoils emerge from target within the cone of elastically scattered beam particles; for sufficiently intense beams, these detectors cannot count fast enough
 - For heavy recoils (m > 100 u), energy resolution of these detectors is insufficient to permit unique identification
- Recoil separator needed to separate recoils from beam, identify according to A and Z, and localize them for subsequent decay studies

EMMA(-O)

特集1

死んだら

どうなる

閻魔と十王の審

閻魔王坐像●えんまおうさぞう 鎌倉時代前期 木造 彩色 像高160.9cm 京都、宝積寺 **於**

+王中、もっとも有名な閻魔王は、も とヤマ神というインドの古い神で、人 界最初の死者だったため冥界の支配者 となった。のちに中国で死者の判定を つかさどる裁判官の王へと転じ、やが て地獄の主宰者として定着した。中国 の役人ふうの服装は道教の影響。じつ は閻魔は地蔵菩薩の化身であることか ら、外見は怒りの表情をしているが、 内心は慈悲の心にあふれている。この 剛と柔を併せもった写実的な像は、鎌 倉時代前期の優品である。

Requirements

- Must be capable of 0° operation with good beam rejection
- Short flight time will allow study of short half-life radioactivities
- Good energy resolution is not helpful
 - Energy and angular resolution of detected heavy recoils insufficient to resolve states for A > 30 beams
 - Energy-dispersionless operation desirable
- Large angular, mass/charge, and energy acceptances required for high collection efficiency
 - Angular acceptance should be symmetric
 - At least 2 charge states for sufficiently massive recoils

Acceptance and Resolution

- Angular and energy spreads largest for fusion-evaporation reactions ($\Omega \sim 10-30 \text{ msr}, \Delta E/E \sim \pm 20\%$)
- Angle and energy spread not independent
- To take advantage of large angular acceptance, need large energy acceptance
- Large energy acceptance requires minimal chromatic aberrations to maintain resolving power
- Mass resolution requirement set by single-nucleon transfer reactions in inverse kinematics: must have first order resolving power M/ $\Delta M \ge 400$

How About a Magnetic Spectrometer?

achievable beam energy spread; protons from 90-170 deg in lab

- Solid angle = $\pm 4^{\circ}$ by $\pm 4^{\circ} = 20$ msr
- Energy acceptance = $\pm 20\%$
- Mass/charge acceptance = $\pm 4\%$
- 1st order m/q resolving power = 450
- 3rd order m/q resolving power for uniform spreads of $\pm 3^{\circ}$ by $\pm 3^{\circ}$ (11 msr), $\pm 10\% \Delta E/E$ is 366 (FWHM)

EMMA Design

Length = 9.04 m target to focal plane

 ± 0.5 mm beam spot in both directions

EMMA-FMA Comparison

TIGRESS placed in front of EMMA or alone

Target Chamber

1

PGAC, Ionisation Chamber, DSSD

"Driving the First Spike"

 350 kV TRIUMF-engineered high voltage power supplies built and tested Common support structure rails installed
TRIUMF-designed focal plane detectors to be built and tested in 2011
Delivery of large electromagnetic elements from Bruker expected in 2011

Current Status

Reference

B. Davids and C. N. Davids, NIM A 544, 565 (2005)

Measurement of ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$ with DRAGON

• Bombarded ³He gas target with $10^{17} \alpha$ particles at $E_{cm} = 2.8 \text{ MeV}$

- Focal Plane Si detector ⁷Be recoil spectrum free from scattered beam
- Total lack of scattered beam implies beam rejection factor of at least 10¹⁷
- This is a world record by at least 5 orders of magnitude
- Gas target density profile measured with ³He(¹²C,p)¹⁴N reaction
- Measurements are ongoing