The PRISMA Ion-Tracing Spectrometer coupled with Large Ge arrays for Nuclear Structure Studies: The CLARA-PRISMA and AGATA-PRISMA setups

A.Gadea (IFIC, CSIC-University of Valencia)

PRISMA Ion Tracing Spectrometer

A. Stefanini et al., NPA701 (02) 217c.

Angular acceptances Solid angle Distance target-FPD Energy acceptance Momentum acceptance Maximum rigidity

Dispersion Energy resolution Mass resolution Aberrations correction $\Delta \theta \sim \pm 6^{\circ}, \Delta \phi \sim \pm 11^{\circ}$ ~ 80 msr 7 m $\pm 20\%$ $\pm 10\%$ ME/q² = 70 MeV amu B ρ = 1.2 T m 4 cm/% 1/1000 (via TOF) 1/300 FWHM via software MCP Start Det. X,Y & T₁ MWPPAC 10 sect. X,Y & T_F

PRISMA: Large acceptance tracking Magnetic Spectrometer Q-D Designed for the HI-beams from XTU-ALPI $\Omega = 80 \text{ msr}$ $\Delta Z/Z \approx 1/60$ (Measured) IC $\Delta A/A \approx 1/190$ (Measured) TOF Energy acceptance ±20% Max. Bp = 1.2 T.m.

Ionisation Chamber 10x4 sect. ∆E - E

MCP Start Detector

- Micro Channel Plate
- 8x10 cm² sensitive area (covering a solid angle of 80msr)
- timing resolution for TOF ~ 350 ps
- particles enter with an angle of 135°

- d_{TARGET}=25 cm
- C-foil $20\mu g/cm^2$ thick
- E_{acc}=30-40 kV/m
- B~120 Gauss

Focal Plane Detectors: MWPPAC

- MWPPAC
- active area 1m x 13 cm
- 10 independent sections
- $\Delta X \sim 1$ mm, $\Delta Y \sim 2$ mm (FWHM)
- stop signal for TOF

Filling gas: C₄H₁₀
Filling pressure: 7 mbar

10 x 3 signals (X_{I} , X_{r} , timing) 2 signals (Y_{u} , Y_{d})

The Focal Plane Detector: IC

PRISMA detectors: present configuration

New FPDs for low energy heavy-ions

PRISMA detectors for light lons and low energy heavy ions: SeD under development

Monte Carlo Simulation of the PRISMA Response Function

D.Montanari et al. EPJA (11) in press

Courtesy of D.Montanari INFN-Milano

Response for an Uniform Distribution for 48Ca

Transport in PRISMA of a uniform distribution in (E_k, θ, ϕ) $E_K = [200, 400] \text{ MeV}$ $\vartheta = [10^\circ, 40^\circ]$ $\varphi = [-40^\circ, 40^\circ]$

D.Montanari et al. EPJA (11) in press

Courtesy of D.Montanari INFN-Milano

Calculated PRISMA Response with INPUT theoretical distributions

D.Montanari et al. EPJA (11) in press

Courtesy of D.Montanari INFN-Milano

CLARA-PRISMA at LNL Clover Detector array PRISMA Spectrometer

A. Gadea et al., EPJA20 (04) 193

25 Euroball Clover detectors (GammaPool) Performance at Eγ= 1.3MeV Efficiency ~ 3 % Peak/Total ~ 45 % FWHM < 10 keV (at v/c = 10 %)

GRAZING and DIC REACTIONS

Identification of products with complementary 0° 0° 0° detectors or by γ -spectroscopy of the partners is required

L.Corradi et al., Phys.Rev.C59 (99)261, Theory: G.Pollarolo

N=28-40 neutron-rich A~50-70 nuclei

Beyond N=40 in Fe isotopes

Comparison ⁶⁴Ni and ⁷⁰Zn onto ²³⁸U

N=40 and N=42 Fe isotopes

⁷⁰Zn@460MeV onto ²³⁸U

The experimental level schemes are more quadrupole-collective than the calculated ones.

Quadrupole collectivity can be produced by including the $d_{5/2}$ shell in the model space (A. Zuker et al., PRC52 R1741 (1995)).

S.M. Lenzi et al., LNL Annual Report 2007 and to be published

Differential RDDS Measurement in the ⁴⁸Ca region with CLARA

D.Mengoni, J.Valiente, A.Gadea, A.Dewald

Differential Plunger for angles ≠ 0°

Lifetime of the 2⁺ in ⁵⁰Ca

Differential RDDS Measurements at the AGATA – PRISMA setup with the Cologne Plunger

Cologne plunger setup for RDDS measurements in grazing reactions **A.Dewald**, **Th. Pissulla, J. Jolie IKP-Uni. Köln**

Table 1: Specifications of the Cologne differential plunger for the use in grazing reactions.

Target-degrader separations:	0–10 mm
Precision of the target-degrader separation setting (motor):	0.1 µm
Inductive transducer resolution:	0.01 µm (0-40 µm range), 0.1 µm (0-200 µm range), 1 µm (0-5 mm range)
Maximum rotation against the beam axis:	45 degrees"

SPECIFICATIONS OF ION TRACING SPECTROMETERS

Solid Angle (msr)	80	100	52
Target-FPD (m)	7	7.3	5.8
Dispersion (cm/%)	4	2.5	3.8
Momentum acceptance	±10%	±5%	±10%
Max Rigidity T∙m	1.4	1.6	1.8

Summary and outlook:

- •PRISMA is a Ion Tracing Spectrometer for Heavy Ions with large acceptance (80 msr).
- •Coupled with Large Ge arrays it has been a very useful tool to study moderately neutron-rich nuclei produced by Grazing reactions
- •PRISMA can be use for any binary reaction with stable beams and RIBs. Any facility will benefit from such instrument

•Drawback: complexity of the response function in case cross section measurements are performed