In-beam spectroscopy at HIE-ISOLDE - detector for conversion electron -

Janne Pakarinen

CERN-ISOLDE, Geneva, Switzerland & Collaborators

HIE-ISOLDE Spectrometer Workshop March 10-11, 2011

- 2 Concept under investigation
- 3 Δe^- background
- Prospects and open questions

• Obtaining nuclear structure information by studying excited states

- In-beam γ-ray or electron spectroscopy provides only partial picture
 => simultaneous observation needed to fully understand de-excitation processes
- E0 transitions, M1 and E2 transitions in heavy nuclei

- Obtaining nuclear structure information by studying excited states
- In-beam γ-ray or electron spectroscopy provides only partial picture
 => simultaneous observation needed to fully understand de-excitation processes
- E0 transitions, M1 and E2 transitions in heavy nuclei

- Obtaining nuclear structure information by studying excited states
- In-beam γ-ray or electron spectroscopy provides only partial picture
 => simultaneous observation needed to fully understand de-excitation processes
- E0 transitions, M1 and E2 transitions in heavy nuclei

E0 transitions

• Nuclear radius, changes in r_{rms}

- Wave functions of especially 0⁺ states, deformation
- Compressibility of nuclear matter

E0 transitions

- Nuclear radius, changes in r_{rms}
- Wave functions of especially 0⁺ states, deformation
- Compressibility of nuclear matter

E0 transitions

- Nuclear radius, changes in r_{rms}
- Wave functions of especially 0⁺ states, deformation
- Compressibility of nuclear matter

At HIE-ISOLDE

Improved beam intensity => access to smaller cross-sections

- Higher beam energy
 => increased cross-section for transfer reaction and multistep Coulomb excitation experiments
- The HIE-ISOLDE spectrometer => channel selection

At HIE-ISOLDE

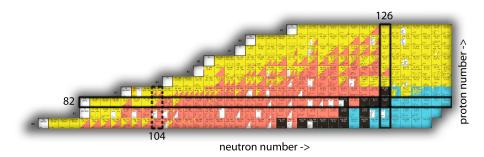
- Improved beam intensity
 => access to smaller cross-sections
- Higher beam energy
 => increased cross-section for transfer reaction and multistep Coulomb excitation experiments
- The HIE-ISOLDE spectrometer => channel selection

At HIE-ISOLDE

- Improved beam intensity
 => access to smaller cross-sections
- Higher beam energy
 => increased cross-section for transfer reaction and multistep Coulomb excitation experiments
- The HIE-ISOLDE spectrometer => channel selection

- INTC-I-091; Measurements of octupole collectivity in odd-mass Rn, Fr and Ra isotopes (INTC-P-244)
- INTC-I-096; Shape studies in the neutron rich N \sim 60 region
- INTC-I-101; Exploration of K-isomerism using unique high-K isomeric beams
- INTC-I-110; Shape coexistence in the neutron-deficient region around Z=82 studied via Coulomb excitation and few-nucleon transfer reactions

- INTC-I-091; Measurements of octupole collectivity in odd-mass Rn, Fr and Ra isotopes (INTC-P-244)
- INTC-I-096; Shape studies in the neutron rich N \sim 60 region
- INTC-I-101; Exploration of K-isomerism using unique high-K isomeric beams
- INTC-I-110; Shape coexistence in the neutron-deficient region around Z=82 studied via Coulomb excitation and few-nucleon transfer reactions


- INTC-I-091; Measurements of octupole collectivity in odd-mass Rn, Fr and Ra isotopes (INTC-P-244)
- INTC-I-096; Shape studies in the neutron rich N \sim 60 region
- INTC-I-101; Exploration of K-isomerism using unique high-K isomeric beams
- INTC-I-110; Shape coexistence in the neutron-deficient region around Z=82 studied via Coulomb excitation and few-nucleon transfer reactions

- INTC-I-091; Measurements of octupole collectivity in odd-mass Rn, Fr and Ra isotopes (INTC-P-244)
- INTC-I-096; Shape studies in the neutron rich N \sim 60 region
- INTC-I-101; Exploration of K-isomerism using unique high-K isomeric beams
- INTC-I-110; Shape coexistence in the neutron-deficient region around Z=82 studied via Coulomb excitation and few-nucleon transfer reactions

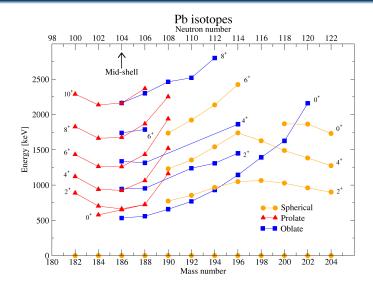
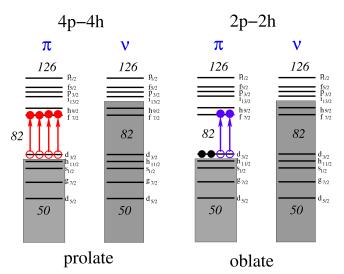
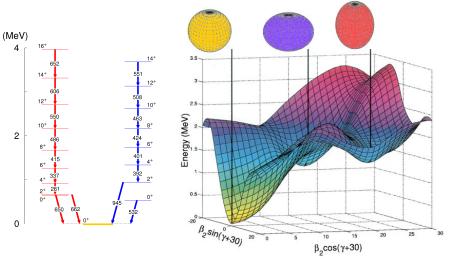

Prospects and open questions

Chart of nuclides in the vicinity of light Pb nuclei


• Unique laboratory to study shape-coexistence phenomena

Level energy systematics for Pb isotopes


Shape coexistence in neutron-deficient Pb isotopes

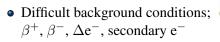
Courtesy of P. Greenlees, see e.g. J.L. Wood et al., Phys. Rep. 215, 101 (1992).

Prospects and open questions

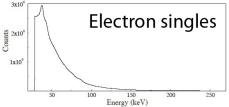
Triple-shape coexistence in ¹⁸⁶Pb

A.N. Andreyev et al., Nature 405, 430 (2000).

J. Pakarinen et al., Phys. Rev. C 75, 014302 (2007).

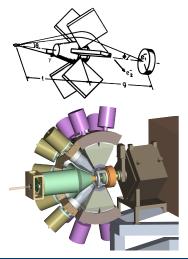


2 Concept under investigation

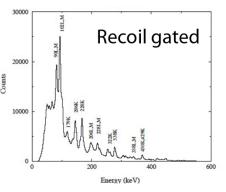

3 Δe^- background

Prospects and open questions

Different methods


- Transporting electrons away from the target area; mini-orange, sacred, sage, spice...H. Kankaanpää *et al.* NIM A **534**, 503 (2004)
- Coincidence gates to purify e⁻ spectra

Prospects and open questions


Different methods

- Difficult background conditions;
 β⁺, β⁻, Δe⁻, secondary e⁻
- Transporting electrons away from the target area; mini-orange, sacred, sage, spice...
- Coincidence gates to purify e⁻ spectra

Different methods

- Difficult background conditions;
 β⁺, β⁻, Δe⁻, secondary e⁻
- Transporting electrons away from the target area; mini-orange, sacred, sage, spice...
- Coincidence gates to purify e⁻ spectra

¹⁷²Yb*, H. Kankaanpää et al. NIM A 534, 503 (2004)

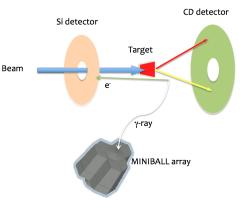
- Versatile set-up in conjunction with MINIBALL (CoulEx and transfer reactions)
- Broad conversion electron energy range
- Enable high beam intensities
- Good energy resolution
- Easy to operate
- Main concern: Δe^- -background

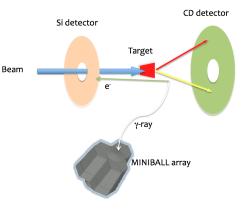
- Versatile set-up in conjunction with MINIBALL (CoulEx and transfer reactions)
- Broad conversion electron energy range
- Enable high beam intensities
- Good energy resolution
- Easy to operate
- Main concern: Δe^- -background

- Versatile set-up in conjunction with MINIBALL (CoulEx and transfer reactions)
- Broad conversion electron energy range
- Enable high beam intensities
- Good energy resolution
- Easy to operate
- Main concern: Δe^- -background

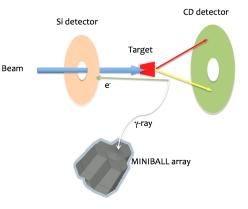
- Versatile set-up in conjunction with MINIBALL (CoulEx and transfer reactions)
- Broad conversion electron energy range
- Enable high beam intensities
- Good energy resolution
- Easy to operate
- Main concern: Δe^- -background

- Versatile set-up in conjunction with MINIBALL (CoulEx and transfer reactions)
- Broad conversion electron energy range
- Enable high beam intensities
- Good energy resolution
- Easy to operate
- Main concern: Δe^- -background


- Versatile set-up in conjunction with MINIBALL (CoulEx and transfer reactions)
- Broad conversion electron energy range
- Enable high beam intensities
- Good energy resolution
- Easy to operate
- Main concern: Δe^- -background


• Conversion electron detector in backward direction

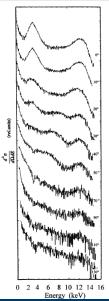
- CD-detector in forward direction
- Coupled to the MINIBALL array



- Conversion electron detector in backward direction
- CD-detector in forward direction
- Coupled to the MINIBALL array

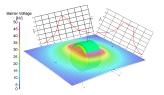
- Conversion electron detector in backward direction
- CD-detector in forward direction
- Coupled to the MINIBALL array

2 Concept under investigation



Δe^- background substraction

- RIB yields typically 10⁶ pps (typical stable beams 10¹⁰ pps)
- Double differential electron emission cross sections in the collision system 5.88 MeV/u U²⁸⁺ on C₃F₈ Bechthold *et al.* PRL 79, 2034 (1997)
- Applying target in HV
- Foils as an option to stop the low-energy Δe^{-1} 's


Δe^- background substraction

- RIB yields typically 10⁶ pps (typical stable beams 10¹⁰ pps)
- Double differential electron emission cross sections in the collision system 5.88 MeV/u U²⁸⁺ on C₃F₈ Bechthold *et al.* PRL 79, 2034 (1997)
- Applying target in HV
- Foils as an option to stop the low-energy Δe^{-1} 's

Δe^- background substraction

- RIB yields typically 10⁶ pps (typical stable beams 10¹⁰ pps)
- Double differential electron emission cross sections in the collision system 5.88 MeV/u U²⁸⁺ on C₃F₈ Bechthold *et al.* PRL **79**, 2034 (1997)
- Applying target in HV
- Foils as an option to stop the low-energy Δe^{-s}

Δe^{-} background substraction

- RIB yields typically 10⁶ pps (typical stable beams 10¹⁰ pps)
- Double differential electron emission cross sections in the collision system 5.88 MeV/u U²⁸⁺ on C₃F₈ Bechthold *et al.* PRL **79**, 2034 (1997)
- Applying target in HV
- Foils as an option to stop the low-energy Δe^{-1} 's

Outline

Physics motivation

2 Concept under investigation

3 Δe^- background

Timeline

Name	Work	2011			2012		2013		2014
		H2	H1	H2	H1	H2	H1	H2	H1
Letter of Intent		•							
Conceptual design	450d	·	-		 7				
G4 simulations	400d								
In-beam test	5d]	i i	0					
Preamp tests	5d]	0						
Detector configuration	40d]	- i -						
Mechanical design	150d]			¥	 1			
Vacuum chamber	30d	1	- i -						
Support structure	30d]			Ъ				
PCB design	50d	1	- i -						
Detector cooling	20d				ľ	Ĺ			
HV 'barrier' at target	20d]	- i -			Ъ			
Construction	100d	1				ţ	•		
Mechanical assembly	100d]	- i -						
DAQ and electronics	150d	1					<u>۲</u>	 -	
MINIBALL DAQ	50d]	i i						
Software	100d]					ţ		
Commissioning]	i i					ŧ	
In-beam		1						•	
		1	- C.						

Janne Pakarinen (CERN-ISOLDE)

• Δe^- background subtraction (HV-barrier, foils)

- Detector segmentation (count rates, Doppler correction)
- General infrastructure (target chamber, detector cooling, support structure, HV...)
- Electronics (number of channels, low-noise high-gain preamps)
- Funding

- Δe^- background subtraction (HV-barrier, foils)
- Detector segmentation (count rates, Doppler correction)
- General infrastructure (target chamber, detector cooling, support structure, HV...)
- Electronics (number of channels, low-noise high-gain preamps)
- Funding

- Δe^- background subtraction (HV-barrier, foils)
- Detector segmentation (count rates, Doppler correction)
- General infrastructure (target chamber, detector cooling, support structure, HV...)
- Electronics (number of channels, low-noise high-gain preamps)
- Funding

- Δe^- background subtraction (HV-barrier, foils)
- Detector segmentation (count rates, Doppler correction)
- General infrastructure (target chamber, detector cooling, support structure, HV...)
- Electronics (number of channels, low-noise high-gain preamps)

• Funding

- Δe^- background subtraction (HV-barrier, foils)
- Detector segmentation (count rates, Doppler correction)
- General infrastructure (target chamber, detector cooling, support structure, HV...)
- Electronics (number of channels, low-noise high-gain preamps)
- Funding