RDDS measurements at RITU and prospects at HIE-ISOLDE

T. Grahn University of Jyväskylä

HIE-ISOLDE Spectrometer Workshop, Lund 10.-11.3.2011

Outline

- Tagging instrumentation at JYFL
- Lifetime measurements utilising selective tagging methods at JYFL
- Plunger device at MINIBALL
- Plunger device at HIE-ISOLDE spectrometer?

BACKGROUND AND MOTIVATION

Shape coexistence in the neutron-deficient Pb region: large body of spectroscopic information obtained with stable beams but the knowledge of transition probabilities was missing.

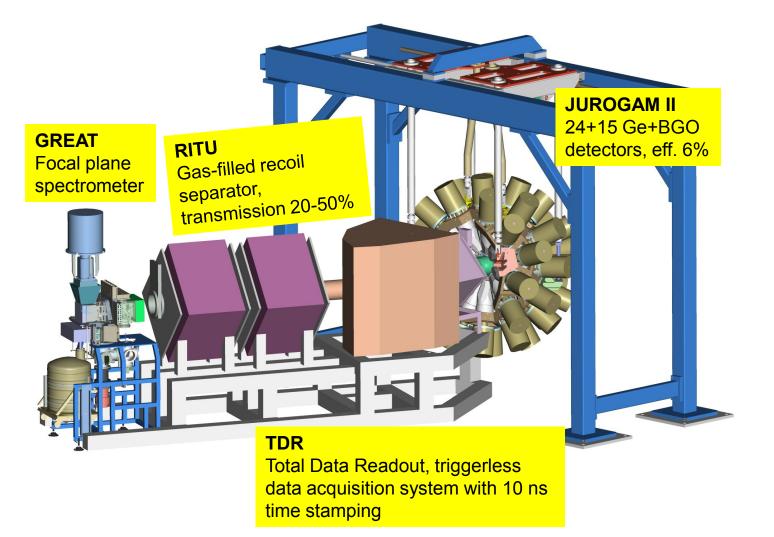
 $\rightarrow \textbf{Couple the K\"oln plunger device to JUROGAM + RITU} at the University of Jyväskylä (JYFL).$

- ¹⁸⁶Pb & ¹⁹⁴Po: First **Recoil Distance Doppler-Shift** (RDDS) lifetime measurements employing the RDT technique. Improved lifetime information on ¹⁸⁸Pb using the recoil-gating method (PRL 97, 062501 (2006) & NPA 801, 83 (2008)).
- Demonstrated that RDDS lifetime measurements are possible for such exotic species.

 \rightarrow Ongoing programme to study lifetimes in nuclei far from stability.

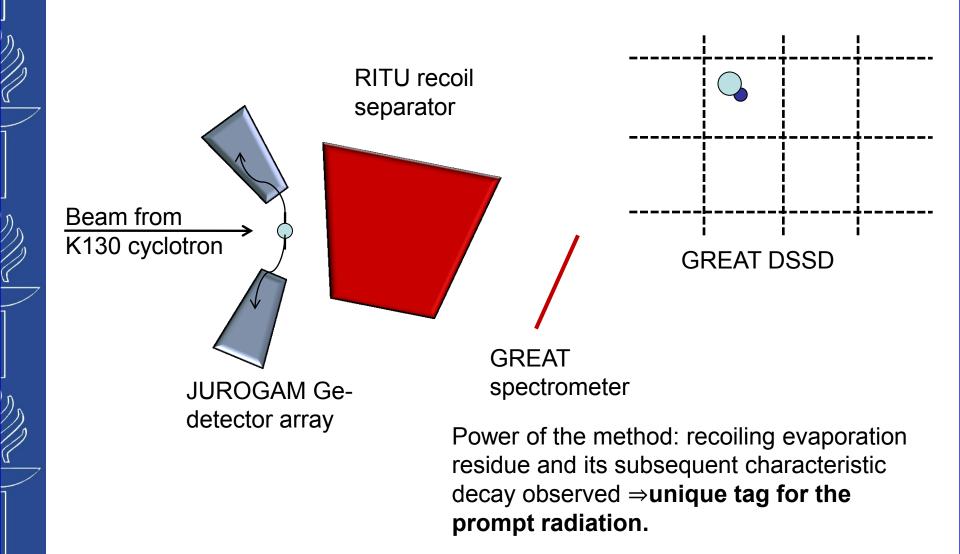
RDDS measurements in the light Pb region are complementary to the Coulomb excitation measurements carried out at REX-ISOLDE.

 \rightarrow State lifetimes set constraints in the analysis of Coulomb excitation data.

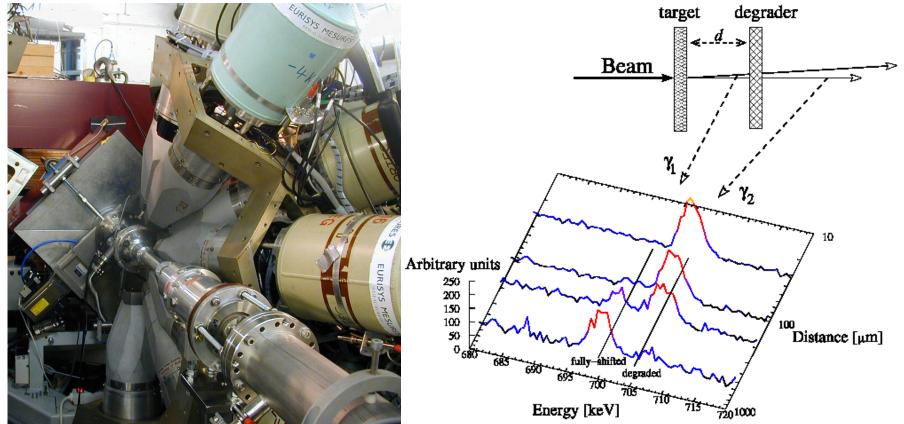

Examples of physics cases

- Shape coexistence: ^{186,188}Pb, ¹⁹⁴⁻¹⁹⁶Po, ^{180,182}Hg, ¹⁷⁵Au, ^{174,175}Pt, ¹⁸²Pt.
- Transition between deformed and spherical structures: ¹⁶⁶⁻¹⁶⁸Os.
- Collectivity and shell evolution above ¹⁰⁰Sn: ^{108,110}Te, ¹⁰⁹I.
- Recoil-isomer tagging, e.g. ¹⁴⁴Ho

The RITU separator renders it possible to access very neutron-deficient nuclei and RDT method results to a very clean γ -ray spectrum for RDDS studies.



Tagging instrumentation at JYFL



Recoil-Decay Tagging (RDT) method

RDDS lifetime measurements at JYFL

First ever Recoil Distance Doppler-Shift (RDDS) lifetime measurements utilising a gas-filled recoil separator and the RDT technique \rightarrow a special plunger device with a degrader foil designed by the University of Köln.

RDDS lifetime measurements at JYFL

The Köln plunger device at RITU:

- Standard' stopper foil replaced by a degrader foil in order to allow evaporation residues to enter RITU.
- Moveable target allows the target-to-degrader distance to be varied.
- Motors operate in vacuum, therefore it has to be isolated from the He gas of RITU \Rightarrow C window.

UNIVERSITY OF JYVÄSKYLÄ RDDS lifetime measurements at JYFL Difficulties/limitations

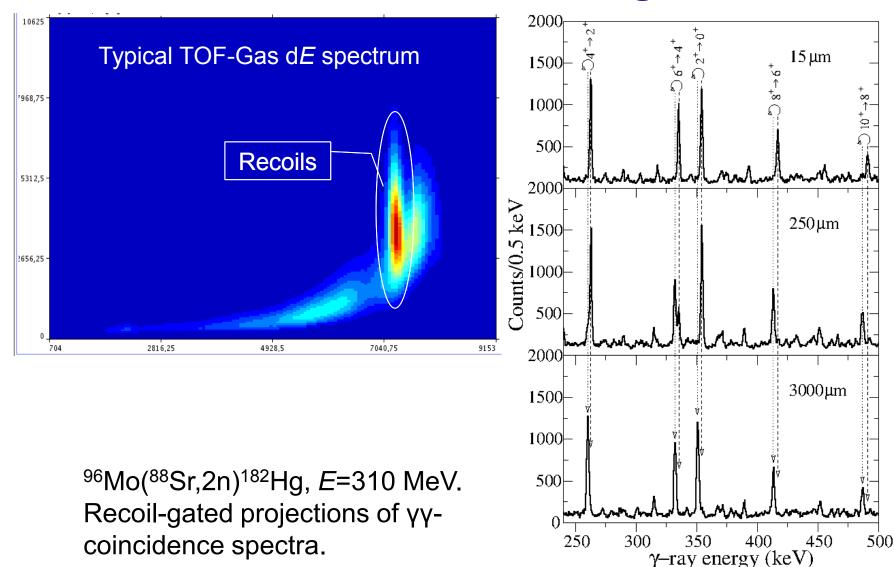
Use of the degrader foil:

- JUROGAM II Ge-detector counting rate increases.
- With a 1 mg/cm² Mg foil, RITU transmission efficiency cut by a factor of 2/3.
- Doppler-shift difference rather low: $v/c = 4\% \rightarrow v/c = 3\%$.

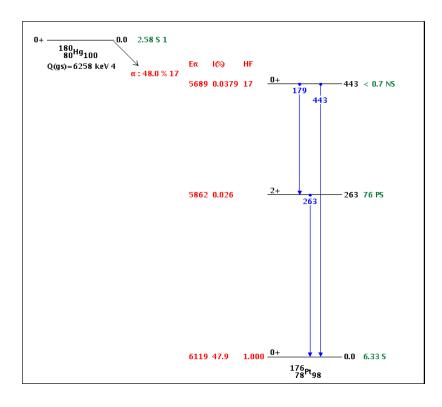
Suitable θ :

- Only 15 of JUROGAM II Ge-detectors can be used; 5 at 158° and 10 at 134°.
- Ge efficiency reduced significantly.

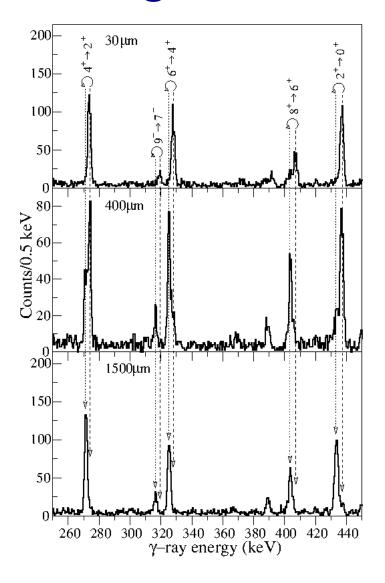
Reaction cross section & residue:


- Measurements down to 50 µb level carried out.
- The nucleus of interest has to have a sufficient p- or α-decay branch for RDT.
- If the exit channel of the reaction is dominant, recoil gating will provide a rather clean tag.

RDDS lifetime measurements at JYFL

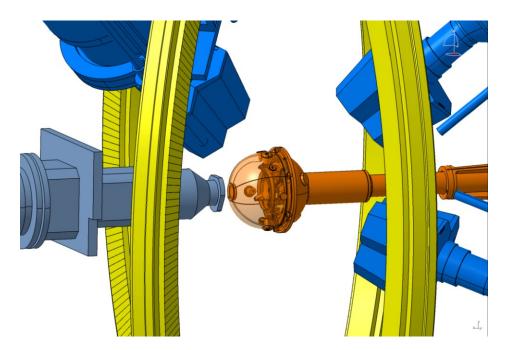

The DPUNS plunger device

- Based on the Köln plunger design, constructed by University of Manchester.
- Can operate in He of RITU \Rightarrow differential pumping.
- To be completed in 2011.
- Dedicated instrument for RITU and MARA.


Lifetimes in ^{180,182}Hg

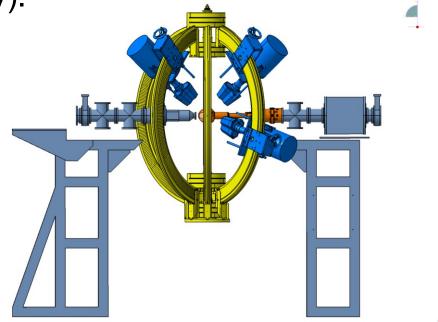
Lifetimes in ^{180,182}Hg

⁹⁴Mo(⁸⁸Sr,2n)¹⁸²Hg, *E*=300 MeV. RDT singles γ-ray spectra, tagged with ¹⁸⁰Hg α decay, at three targetto-degrader distances.


Lifetimes in ^{180,182}Hg

High collectivity of the Transition quadrupole moments of states with $I^{\pi} \ge 4$ selected Hg nuclei. indicate thei 2.4¹⁸⁶Hg on¹⁰⁷Ag deformed ch 2.2The results : shape coexi 🕫 weak oblate $\frac{1}{6}$ 1.6 intruding prc^{EI}_{to} 1.4 structures 1.2Lifetime Complemen Low COM Angular Range Med COM Angular Range 0.8measureme High COM Angular Range 0.6 excitation st -21.5 2° 2.5-2.50.5 -1.5-0.50 182,184,186,188 $<2^{+}||E2||2^{+}>[eb]$ Mass number AISOLDE

T. Grahn et al., PRC 80, 014324 (2009)


Plunger device at MINIBALL

- Project jointly managed by Demokritos Athens and IKP Köln.
- The plunger device is based on the Köln design.
- The design process is ongoing.

Plunger device at MINIBALL

- Target chamber incorporates the plunger device upstream and the CD Si detector downstream.
- Experience gained in JYFL experiments with the `CoulEx plunger' (Köln plunger device + particle detector array).

Plunger device at HIE-ISOLDE spectrometer?

- HIE-ISOLDE spectrometer LoI: Several physics cases and methodologies:
 - Transfer reactions
 - Deep inelastic reactions
 - Fusion-evaporation reactions
 - Several experimental scenarios for the plunger device could be envisaged.
- Plunger device is relatively easy to couple with a separator.

Plunger device at HIE-ISOLDE spectrometer?

Deep inelastic & transfer reactions

- Reaction kinematics could be problematic.
- However, such studies have been carried out at CLARA-PRISMA, LNL (see e.g. D. Mengoni et al., EPJA 42, 387 (2009)).
- Fusion-evaporation reactions
 - Difficulties: low beam intensity, low cross section.
 - Beam intensity at JYFL usually 1 pnA ⇔ ~10⁸ pps, cross sections down to 50 µb.
 - Similar intensities could be achieved at HIE-ISOLDE, due to the projected intensity increase, for radioactive beams `not so far from stability'.

Plunger device at HIE-ISOLDE spectrometer?

- Would provide a complimentary method to Coulomb excitation in measurements of transition probabilities.
- Not sensitive to reaction mechanism and target excitations.
- May provide access to measurements of transition probabilities in regions of the nuclear chart otherwise inaccessibly with Coulomb excitation (deepinelastic/fusion-evaporation reactions).