
GridPP48 DIRAC Update 

Daniela Bauer & Simon Fayer



What is DIRAC ?

● DIRAC is software that comprises of:
○ Workload Management System (“Global batch system”)
○ File Catalog/Data Management
○ Workflow Management System 
○ Documentation: https://dirac.readthedocs.io/en/latest/

● Provides a standardized user interface to multiple compute and 
storage resources

● Written in Python (for Linux)
○ OpenSource: https://github.com/DIRACGrid/DIRAC

● Originally developed by LHCb the project is administered by the 
DIRAC consortium (UK member: Imperial College)

● Used by a number of communities to manage the various 
aspects of their data processing:
○ Experiment specific: e.g. LHCb, Belle2, ILC, Cherenkov Telescope 

Array, NICA (JINR), BES (Beijing), biomed
○ Multi-Community: e.g GridPP, France-Grilles, EGI 

https://dirac.readthedocs.io/en/latest/
https://github.com/DIRACGrid/DIRAC


The GridPP DIRAC instance

Workflow 
System



The GridPP DIRAC instance: How to (mostly) not break stuff

Pre-Prod Server:
verifying releases, new 

components

Development server 1
(e.g. IRIS, SwiftHEP, 
GridPP features, py2 -> 
py3)

Development server 2

dirac01 dirac02

Web DB

DIRAC git repo
(https://github.com/
DIRACGrid/DIRAC)

Production Server 

Nagios



DIRAC Usage

That is actually Euclid, 
more on that later….



Case studies: LZ

● DIRAC forms a large part of their processing work chain in 
the UK:
○ Used for grid and cloud computing
○ 12.5 mio files registered in the DIRAC File Catalog
○ LZ built a experiment specific front end using the DIRAC python 

API for bulk processing (main developer: A. Richards)
● A lot of DIRAC Cloud developments were driven by this 

project.

Please see their talk on Friday: 
https://indico.cern.ch/event/1169160/contributions/4990486/



Case studies: T2K/Hyper-K

● DIRAC forms the backend to the T2K/Hyper-K Data 
Management System:
○ T2K: 7.5M files
○ Hyper-K 4.0M files

● Uses the DIRAC Request Management System with an 
FTS3 backend for data movement/replication

● This requires operational support from DIRAC, especially 
when new storage elements are commissioned



Case Study: Euclid

● Euclid UK computing is primarily supported by IRIS
● Recently a Euclid user had a production task to be run at 

scale that was more suited to grid-type resources
● Used the gridpp VO as an incubator VO
● Worked with the user to prepare their project for grid 

deployment:
○ Code deployment: replicated code bundles & conda
○ Operational assistance: Debugging failures, mostly fixed after 

discovering an unexpected high memory usage
○ Grid storage used as scratch space for results



Case Study: Euclid

● Quick ramp up
● All sites contribute 

resources
● On Euclid’s request 

we made their IRIS 
cloud allocation at 
Imperial available 
through DIRAC

● Migrating to new VO 
after successful 
startup: eucliduk.net

https://voms.gridpp.ac.uk:8443/voms/eucliduk.net/configuration/configuration.action


Engagement with non-GridPP projects

● IRIS: 
○ User Support:

■ Current: LZ, Euclid
○ Digital Assets (DIRAC enhancements):

■ Standardizing Cloud Interfaces using libcloud
● builds on initial asset “direct cloud submission in multi-VO DIRAC”

■ Basic multi-VO Rucio Integration
■ Multi-VO File catalogue metadata
■ Multi-VO Resource Status system: Automatic disabling of ‘bad’ sites

As these features make their way into production, there is mutual profit for both GridPP 
and IRIS.



Engagement with non-GridPP projects
● SwiftHEP Development - Pilot log system (J.Martyniak):

○ Summary: If you want a reliable service, you need to be able to 
debug problems.
■ Pilot jobs:

● Check the worker-node environment 
● Can stage required input/output files 
● Start and supervise the user job (record memory usage, efficiency, etc.)

■ Pilot job logs are stored in an technology dependent way at the execution 
resources

■ Retention policies vary by technology and site:
● Some logs only kept while job running!
● Others kept 3 days - 1 month depending on configuration.
● Transient (cloud) resources may not have space suitable for archiving 

these logs.
■ Log can be completely lost in cases where job crashes (i.e. exceeding batch 

limits).
■ Retaining pilot job logs in a reliable, resource independent manner was 

identified as a high priority item by all DIRAC supported communities
■ We are hoping to release a first version of this within a month 

 



Engagement with non-GridPP projects

● SwiftHEP - Harnessing DIRAC’s inbuilt functionality
○ DIRAC has an inbuilt workflow component that can be used to 

chain multiple steps in an analysis workflow together
○ Analysis WorkPackage would like to use DIRAC to:

■ Store analysis output and attach metadata to it for further processing
■ Distinguish temporary and long lived files
■ Automate certain steps in a processing cycle
■ Delete temporary files at the end of a processing cycle automatically

○ Similar workflows are used by e.g. ILC and CTA on DIRAC
○ The challenge is to implement this in a multi-VO environment
○ System currently deployed on pre-prod server for testing



Summary

● The GridPP DIRAC instance is currently the entry point to 
grid and cloud resources for ~ 10 non-LHC communities

● The project is in active development
● The GridPP DIRAC instance is regularly 

updated/extended in a well defined process
● GridPP also provides the necessary user support that 

enables non-LHC communities to use their facilities
● The GridPP DIRAC team engages with other UK projects 

(IRIS, SwiftHEP) to ensure DIRAC continues to meet their 
requirements which in turn benefits GridPP communities


