

xrootd monitoring

<u>A. Forti</u>, R. Currie GridPP48

2 September 2022

Introduction

- DC Dashboard generally considered useful
 - Used for both DC and TC I & II
 - Required expertise in the data structures to plot consistent information
 - Many plots could only be static selections
 - xrootd traffic underestimated

Example of static plot which pulls from different data sources and and took some expertise to put together a meaningful query

Monitoring TF

- Following DC recommandations <u>WLCG monitoring TF</u>
 - Re-structure xrootd monitoring infrastructure
 - Get the correct monitoring for xrootd protocol
 - Integrate Xcache traffic
 - Agree a common schema between the experiments, FTS & xrootd
 - i.e. consolidate in one data source that can be manipulated by users with selector buttons rather than experts
 - Refactor DC dashboard to use the new schema
 - Add site monitoring
- People
 - Borja Garrido, Rizart Dona, Julia Andreeva, Shawn McKee, Derek Weitzel, Alessandra Forti
 - Useful contribution from Rob Currie and Katy Ellis

Restructure Xrootd mon

Restructure Xrootd mon

Shoveler

- UDP -> TCP translation service <u>written in go</u>
- Easy to install
 - Official notes use containers but....
 - 1 rpm, 1 yaml config file, 1 extra line on every xrootd server that needs to report
- Can send to 2 services (not clear why not more)
 - Local and remote monitoring
 - A limitation for multiple VOs that may want to send data to their monitoring from a shared storage
 - OSG doesn't care because they take care of it centrally

ActiveMQ Authz

- CERN ActiveMQ authz only accepts 2 methods
 - Username/password
 - Operator certificate
- Neither is convenient particularly for large scale publishing
- Need to discuss enabling tokens
 - OSG already uses them in their infrastructure
 - Good non user case to get acquainted with tokens
- It affects anything sites want to publish
 - Site network or tape monitoring
 - Benchmark results
 - 0

Collector

- Collector translates the shoveler output to a human readable format
- 73 monitoring fields
 - Originally designed for developers not for accounting
- Output tailored for Elastic Search
 - To add to prometheus you need to write a parser
- RAW data still needs to be massaged to be used for higher level plots in in dashboards like grafana
 - RAW data needs to be understood first!
- VO field information embedded in the user authz No authz no VO name
 - x509 connections are ok (Manchester tests)
 - tokens need to be tested
 - Alice on EOS and current RAL CMS data don't contain this information

data.operation_time # data.read_average # data.read bytes # data.read bytes at close # data.read max # data.read min # data.read operations # data.read_sigma # data.read single average # data.read single bytes # data,read_single_max # data.read single min # data.read single operations # data.read single sigma # data.read vector average # data.read vector bytes # data.read vector count average # data.read vector count max # data.read vector count min # data.read vector count sigma # data.read vector max # data.read vector min # data.read vector operations # data.read vector sigma data.remote access

Common schema

- Final goal is to plot xrootd traffic & FTS traffic on the same plot
- xrootd traffic and FTS are inherently different
 - Different fields are needed to calculate the throughput
- xrootd monitoring also doesn't have topology information that needs to be added from CRIC
 - Not all the experiments fill the parameters needed in CRIC
- Dcache output different from native xrootd
 - Not all xrootd fields are needed

MANCHESTER

Need to agree a <u>common set of fields</u> to build the data source

Attribute name	Meaning	Туре	Comments and derived attributes
dst_hostname	Primary attribute which allows to identify transfer destination	String	Derived attributes: Destination site, country, experiment site, tier, federation Resolved via topology system CRIC
src_hostname	Primary attribute which allows to identify transfer source	String	Derived attributes: Source site, country, experiment site, tier, federation Resolved via topology system CRIC
			Dst_hostname and src_hostname also allow to define whether access is local or remote, that is remote_access boolean attribute
protocol	Used protocol	String	Should agree on a common naming

- Not yet agreed
 - Discussion at the next GDB 14/9
 - Deadline to agree on 30/9
 - Then other discussions with devs

UK sites contribution

- Original testing was done using Alice resources at CERN.
 - Clearly not enough because Alice is peculiar and because it was internal to CERN
- RAL: Katy installed the shoveler on the CMS production system it is the only visible traffic and the analysis she's doing with kibana poses useful questions
 - See her <u>CMS talk</u>
- Manchester: installed this on a DPM testbed not much traffic but the advantage is that I can send data as a number of VOs
- Edinburgh: xcache and stashcache

MANCHESTER Cache monitoring work at Edinburgh

- Develop/understand XRootD monitoring at Edinburgh.
 - Use-case very similar but different to WLCG XRootD site 0 monitoring.
- Interested in Cache performance, optimization and real-time monitoring.
- Currently working to understand and calibrate the monitoring data we get.
- XCache service at Edinburgh deployed on similar HW to StashCache, but with ~16TB of storage.

1824

XCache at Edinburgh

- Managed about ~2.5PB of traffic to/from site WN in 6mo. (16TB total)
- Reduced required bandwidth from SE by 40%
- Planning to route all ATLAS job access through XCache using PANDA

Cache Monitoring

• To try and cross-check our monitoring we're dividing everything into 3 datasets which should agree.

Node Exporter	XCache internal stats / logging	XRootD monitoring stream(s)
Proven industry standard tools using tested APIs.	"Must be True" data as this is the internal state of XRootD and the ProxyFileCache	Closest to WLCG monitoring.
Reliable system and network	plugin.	Testing identified GDPR and configurability issues with WLCG
monitoring stats.	Internal state of the XRootD-PFC for each file is stored on disk in metadata.	shoveler service. – WIP
	Have developed custom metadata tracker	Historically there have been concerns about accuracy of
	which records/reports state changes.	XRootD monitoring metrics.
	Extracting transfer data from logs is valuable cross-check.	

MANCHESTER StashCache Service a Quick Summary

- A HTTP(S) based file caching network supporting partial file transfers.
- Like XRootD-PFC in some ways, like CVMFS in others.
- Service configuration via mostly "standard" XRootD config files.
- Access restricted to ports 1094,8000,8443,9619
- To join StashCache network Edinburgh registered as an "OSG site" in the UK with Geo-IP data.
- Currently StashCache service hosted on an old SE-node: 16Cores 24GB RAM ~10TB of storage with 10Gbps.

1824

MANCHESTER 1824 StashCache at Edinburgh

- Running for ~2months. Ingested ~2TB. Egressed ~120TB.
- Working to understand the impact of this work on final job efficiencies for DUNE and other VOs.

Cache Deployment and Monitoring

- Lots of metrics to track and being collected.
- Some metrics best monitored using Node+Prometheus.
- Other metrics require using OpenSearch+Dashboards.
- Now need to work out how to best to use/compare/display this data.
- Load on cache has been similar or higher to a well-tuned SE-node.
- These will need to be replaced/upgraded in time.

UK monitoring

- CERN is going to collect all the data from the storages and non-LHC VOs traffic can still be plotted
- Local monitoring from the storage to compare to the network monitoring is an important part
- Not clear if we want to have a centralised UK monitoring for non-LHC VOs
- The xrootd infrastructure as well as the monit infrastructure would have to be replicated in that case
 - OSG model

Conclusions

- Work is slowly progressing
- Infrastructure seemed the most important but there are a lot of details to iron out
- Multiple VOs difficult to handle if the VO name is not always included in the data
 - So far only x509 connections guarantueed
- UK infrastructure would be nice but lots of work without a monit infrastructure

