LHC-HH: Outlook and Plans

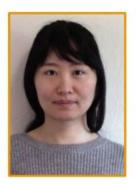
S.Manzoni

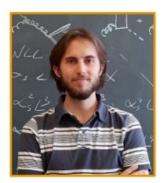
on behalf of:

E. Brost, R. Gröber, N. Lu, J. Mazzitelli, M. Mühlleitner

The 19th Workshop of LHC Higgs Working group

30th November 2022

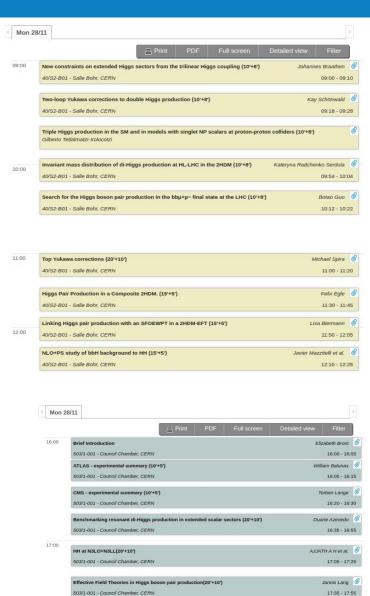



LHC-HH team

Conveners:

- Liza Brost → Stefano Manzoni
- Nan Lu
- Ramona Gröber
- Javier Mazzitelli
- Margarete Mühlleitner

Thank you to Liza for her work in the last years!

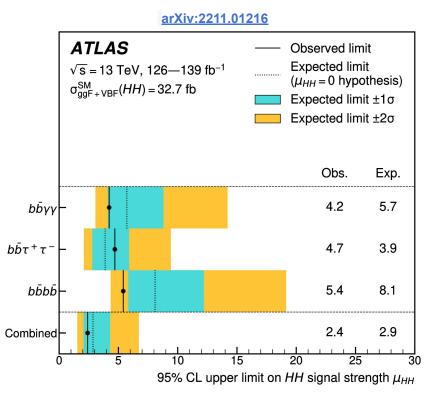

Introduction

LHC-HH cross-group very active and growing community:

- Higgs Pairs: May 30th June 3rd, 2022 in Dubrovnik, Croatia
 - 137 participants, 56 talks <u>link to the agenda</u>
- At this workshop we organized two parallel sessions:
 - 5 lighting talks <u>link to the agenda</u>
 - 4 contributions <u>link to the agenda</u>
- Plenary session:
 - 5 talks link to the agenda

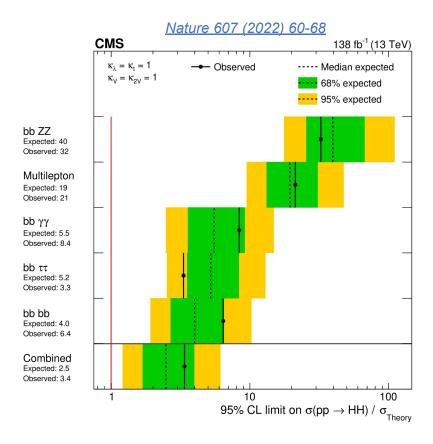
Thank you to all the speakers for the very nice presentations!

Ongoing work in the LHC-HH cross group

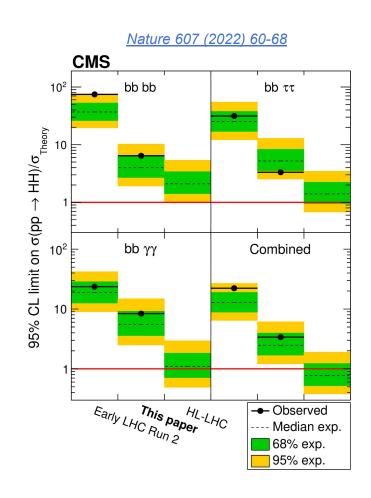

task	status
ggF: top-quark mass renormalization scheme uncertainty	Phys. Rev. D 103, 056002 (2021)
ggF: NLO EFT frameworks and new shape benchmarks, HEFT vs SMEFT	In progress
ggF: combination of H and HH (in connection with WG2 activities)	In progress
ggF: cross section / MC for gg → H + bb	In progress
ggF/VBF: cross section and MC prediction for various m _H values	In progress, need different coupling values
VBF: fiducial cross-sections vs. coupling modifiers	Need external inputs
VBF: cross-sections for ggF HH+2j at hard matrix-element	Ongoing. MC studies @ LHC-HH
Resonant: benchmarks for spin-0 HH, SH and SS to be probed with 100-300/fb, including interference with non-resonant HH	J. High Energ. Phys. 11 (2022)
Compositeness models: covered by EFT?	started

= reports this week

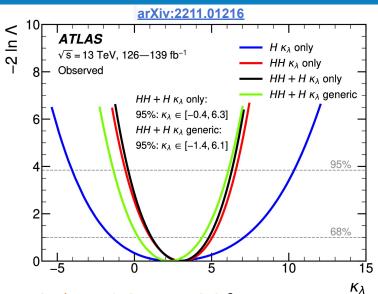
= needs personpower

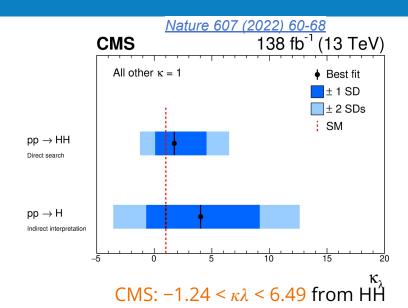

Run 2 experimental results

- ATLAS and CMS have published a significant amount of new results in the last 1-2 years
- Also statistical combinations have been provided



ATLAS: obs 2.4 x σ^{SM}_{HH} (exp. 2.9 x σ^{SM}_{HH}) CMS: obs 3.4 x σ^{SM}_{HH} (exp. 2.5 x σ^{SM}_{HH})


Run 2 experimental results


		$\sigma_{HH}/\sigma_{HH}^{SM}$ 95% CL				
			''''	Improvement		
		Obs.	Exp.	wrt. 36 fb $^{-1}$		
				tot. (w/o lumi)		
$ extit{HH} ightarrow extit{bb}\gamma\gamma$	ATLAS	4.2	5.7	×4.6 (2.3)		
$IIII \rightarrow DD \gamma \gamma$	CMS	8.4	5.5	×3.4 (1.9)		
extstyle HH o bb au au	ATLAS	4.7	3.9	×3.8 (2)		
$IIII \rightarrow DDIII$	CMS	3.3	5.2	×4.8 (2.5)		
HH o bbbb	ATLAS	5.4	8.1	×2.6 (1.3)		
IIII o DDDD	CMS	3.9	7.8	×4.7 (2.4)		
boosted	CMS	9.9	5.1	39		
resolved+boosted	CMS	6.4	4.0			
HH o bbZZ	ATLAS	_	_	5 0		
TITT → DDZZ	CMS	32	40	y—		
Multilantan	ATLAS	-	<u>99</u>	-		
Multilepton	CMS	21	19	_		
Combination	ATLAS	2.4	2.9	×3.4 (1.7)		
	CMS	3.4	2.5	×5.1 (2.6)		

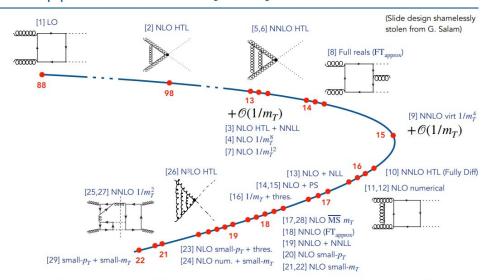
- The new analyses exceeded the luminosity expectations!
- Thanks to object-performance improvements (b-tag, T-id, ParticleNet...), and investigation of new topologies

Run 2 experimental results

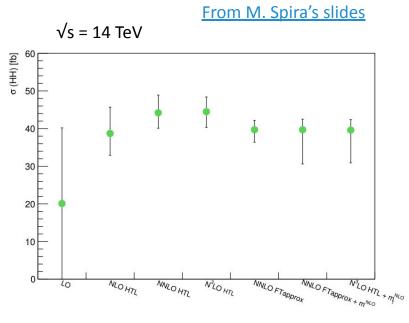
ATLAS obs.: $-0.6 < \kappa\lambda < 6.6$ from HH

ATLAS obs.: $-0.4 < \kappa\lambda < 6.3$ from HH+H

	HH-only ATLAS κλ 95%CL interval				
	expected	observed			
36 fb ⁻¹	[-5.0, 12]	[-5.8, 12]			
Full Run 2	[-2.1, 7.8]	[-0.6, 6.6]			
2018 HL-LHC projection (starting from 36 ifb)	[-0.4, 7.3] (stat only [-0.1,2.7] ∪[5.5,6.9])				
2022 HL-LHC projection	[0.0, 2.5] (stat only [0.3, 1.9])				

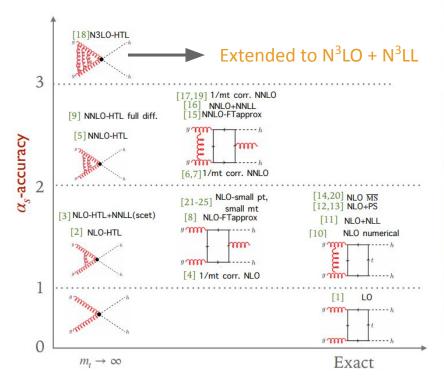

Experimental results improve significantly along Run 2

Looking forward for Run 3 data analysis...


A Look to theory status of HH

From S. Jones's slides

An approximate history (30 years in 30 seconds)



[1] Glover, van der Bij 88; [2] Dawson, Dittmaier, Spira 98; [3] Shao, Li, Li, Wang 13; [4] Grigo, Hoff, Melnikov, Steinhauser 13; [5] de Florian, Mazzitelli 13; [6] Grigo, Melnikov, Steinhauser 14; [7] Grigo, Hoff 14; [8] Maltoni, Vryonidou, Zaro 14; [9] Grigo, Hoff, Steinhauser 15; [10] de Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev 16; [11] Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, Schubert, Zirke 16; [12] Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, Zirke 16; [13] Ferrera, Pires 16; [14] Heinrich, SPJ, Kerner, Luisoni, Vryonidou 17; [15] SPJ, Kuttimalai 17; [16] Gröber, Maier, Rauh 17; [17] Baglio, Campanario, Glaus, Mühlleitner, Spira, Streicher 18; [18] Grazzini, Heinrich, SPJ, Kallweit, Kerner, Lindert, Mazzitelli 18; [19] de Florian, Mazzitelli 18; [20] Bonciani, Degrassi, Giardino, Gröber 18; [21] Davies, Mishima, Steinhauser, Wellmann 18, 18; [22] Mishima 18; [23] Gröber, Maier, Rauh 19; [24] Davies, Heinrich, SPJ, Kerner, Mishima, Steinhauser 19; [26] Chen, Li, Shao, Wang 19, 19; [27] Davies, Herren, Mishima, Steinhauser 19, 21; [28] Baglio, Campanario, Glaus, Mühlleitner, Ronca, Spira 21; [29] Bellafronte, Degrassi, Giardino, Gröber, Vitti 22;

- Huge effort on the last years of the theory community to improve the precision of the calculation
- NNLOFTapprox affected by uncertainties due to factorization/renormalization scale and m_t scale/scheme choice ~ 25%

A Look to theory status of HH: N³LO + N³LL

- [1] Glover, van dear Bij '88
- [2] Dawson, Dittmair, Spira '98
- [3] Shao, Li, Li, Wang '13
- [4] Grigo, et.al '13
- [5] Florian, Mazzitelli '13
- [6,7] Grigo, et.al '14, '15
- [8] Maltoni, Vryonidou, Zaro '14
- [9] Florian, et.al '16
- [10] Borowka, et.al '16, '16
- [11] Ferreira, Pires '16
- [12] Heinrich et.al '17
- [13] Jones, Kuttimalai '17
- [14] Baglio, et.al '18
- [15] Grazzini, et.al '18
- [16] Florian, Mazzitelli '18
- [17] Davies, Steinhauser '19
- [18] Chen, Li, Shao, Wang '19, '19

13 TeV

600

800

m_{hh} (GeV)

1000

0.05

0.04

do∕dm_{hh}

LO+LL

NLO+NLL

NNLO+NNLL

N3LO+N3LL

- [19] Davies, et.al '19
- [20] Baglio, et.al '21
- [21] Davies et al '18, '18, '19
- [22] Mishima '18
- [23] Bonciani, et.al '18
- [24] Grover, Maier, Rauh '19
- [25] Bellafronte, et.al '22

_	\	· · ·	つ	1	0	_		1		1	л
2	rх	١١	v:2	•	יוו	ч	Ш	ו≺	ч	ш	71
u	17	VI.	v	_	U.	ノ・	u	J		_	_

Infinite top mass approximation

	\sqrt{s} [TeV]	Order	$\mathrm{N}^k\mathrm{LO}$	N^kLO -	$+N^kLL$
\s [TeV]	k	N~LO	N_2 scheme	\overline{N}_2 scheme	
		0	$13.80^{+31\%}_{-22\%}$	$16.01^{+32\%}_{-23\%}$	$21.02^{+36\%}_{-24\%}$
	13	1	$25.81^{+18\%}_{-15\%}$	$30.04^{+10.8\%}_{-10.3\%}$	$29.36^{+12.6\%}_{-8.8\%}$
	13	2	$30.41^{+5.3\%}_{-7.8\%}$	$31.51^{+2.5\%}_{-3.0\%}$	$31.21^{+3.0\%}_{-3.3\%}$
		3	$31.31^{+0.50\%}_{-2.8\%}$	$31.37^{+0.84\%}_{-0.49\%}$	$31.35^{+0.88\%}_{-0.85\%}$

(fb/GeV) 0.04 0.03

qα/qα_{N3}ro+

1200

0.03

PDF4LHC15 nnlo 30

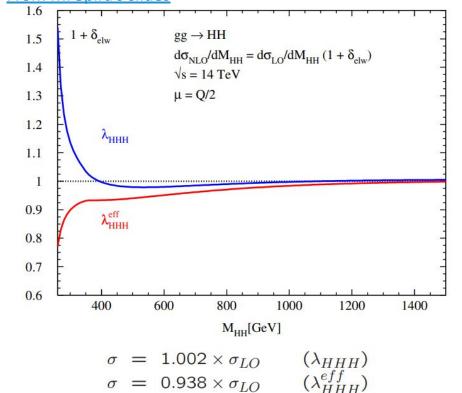
800

m_{hh} (GeV)

1000

Central scale: $\mu_R = \mu_F = m_{hl}$

•	Scale reduction to percent-level:

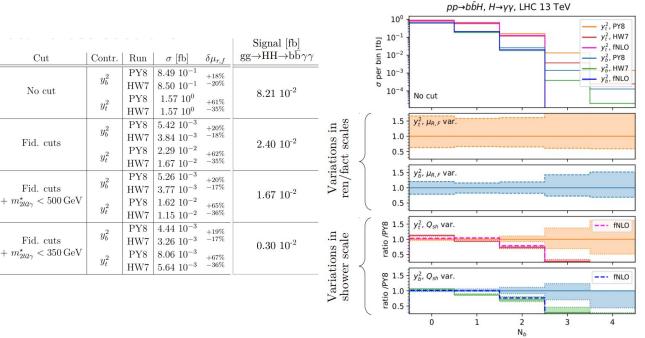

- Factor 2 reduction from N^3LO to $N^3LO + N^3LL$
- Factor 4 reduction from NNLO to N³LO
- Good perturbative convergence
- Results combined also with the finite top-quark mass effect -> scale unc. at sub-percent level

•
$$\mathbf{N}^{k}\mathbf{LO}\otimes\mathbf{N}^{l}\mathbf{LO}_{m_{t}}$$
: $d\sigma^{\mathbf{N}^{k}\mathbf{LO}\otimes\mathbf{N}^{l}\mathbf{LO}_{\mathbf{m_{t}}}} = d\sigma^{\mathbf{N}^{l}\mathbf{LO}}_{m_{t}}\frac{d\sigma^{\mathbf{N}^{k}\mathbf{LO}}_{m_{t}\to\infty}}{d\sigma^{\mathbf{N}^{l}\mathbf{LO}}_{m_{t}\to\infty}} = d\sigma^{\mathbf{N}^{l}\mathbf{LO}}_{m_{t}} + \left(d\sigma^{\mathbf{N}^{k}\mathbf{LO}}_{m_{t}=\infty} - d\sigma^{\mathbf{N}^{l}\mathbf{LO}}_{m_{t}\to\infty}\right) \frac{d\sigma^{\mathbf{N}^{l}\mathbf{LO}}_{m_{t}}}{d\sigma^{\mathbf{N}^{l}\mathbf{LO}}_{m_{t}\to\infty}}$

top Mass scheme uncertainties are unchanged

- Not only QCD but also EW correction could be important for HH.
- Two talks on NLO EW top yukawa correction:
 - K. Schönwald analytical computation in the High energy limit (JHEP08(2022)259)
 - M.Spira Heavy top limit correction to ggHH (arxiv: 2207.02524)

From M. Spira's slides


- Effect on the inclusive cross-section ~ 0.2%
- Not negligible effect on mHH distribution, especially at the threshold
- "uncertainties due to unknown full EW. corrections
 10 20%"

we need to schedule a dedicated LHC-HH meeting to discuss how to integrate these as proper recommendation/uncertainty

Background studies: NLO production of bbH

- Single Higgs production in association with a bottom pair is an irreducible background to all H(→bb)H searches
 - Currently in the ATLAS experiment this contribution is simulated with NNLOPS ggH + bbH simulation with Powheg
 - +100% uncertainty on top of ggH yield to cover for possible mis-modelling (similar in ttH analyses)
 - Not negligible contribution when compared to signal
- Starting from <u>arxiv:1808.01660</u> -> bbH produced at NLO and matched to PS
 - Investigate bbyy final state in a phase-space region similar to Atlas analysis
 - Considering m2b2y<350GeV, m2b2y<500GeV and no-m2b2y cut

 $\mathcal{O}(\alpha_s^4 y_t^2)$ $pp \rightarrow b\bar{b}H$, $H \rightarrow \gamma \gamma$, LHC 13 TeV ₫ 10-4 ₽ 10⁻⁵ 10 Fid. cuts y², μ_{R,F} var 1.0 0.5 y_b^2 , $\mu_{R,F}$ var 1.5 yt, Qsh var! 1.5 Latio /PY8 y_b^2 , Q_{sh} var 300 500 600 700 m;_{2b2y} [GeV]

- Di-Higgs signal and bbH background are of similar size
- Difference in shape between HW7 and PY8 for Nb-jet due to g->bb splitting in PY8
- Top and bottom Yukawa contributions prefer different values of m2b2γ

Possible prescription when study will be finalized

12

Plan Interpretation: EFT

A note from HH-group is ready for circulation within LHC-WG concerning HH EFT:

- Tool to be used for HEFT and SMEFT interpretation
- Discussion of the translation between HEFT and SMEFT ⇒ Not trivial, better to study both EFT representations separately
- Updated HEFT benchmarks (arXiv:1908.08923)
- Discussion of theory uncertainties propagation
- Reweighting approach and inputs for experiments

Updated HEFT benchmarks Published in WG note

				-	
benchmark	Chhh	Ct	Ctt	Cggh	Cgghh
SM	1	1	0	0	0
1*	5.105	1.1	0	0	0
2*	6.842	1.033	1 6	$-\frac{1}{3}$	0
3	2.21	1.05	$-\frac{1}{3}$	0.5	0.5
4*	2.79	0.9	$-\frac{1}{6}$	$-\frac{1}{3}$	$-\frac{1}{2}$
5	3.95	1.17	$-\frac{1}{3}$	1 6	$-\frac{1}{2}$
6*	-0.684	0.9	$-\frac{1}{6}$	0.5	0.25

- Coder 1

 State 2

 Coder 1

 State 3

 Coder 3

 State 3

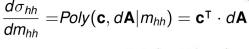
 Sta
- Shape clusters defined using unsupervised ML
- Benchmarks chosen with clear shape features and satisfying experimental constraints
- * denotes updated benchmark point, new constraints: $0.83 \le c_l \le 1.17$ (and $|c_{tt}| \le 0.05$ for 1*)
- [Capozi, Heinrich '19]

$\sigma_{\it hh}^{\rm NLO}$	$=A_1c_t^4+A_2c_t^4$	$c_{tt}^2 + (A_3c_t^2 +$	$+ A_4 c_{ggh}^2) c_{hhh}^2$
	$+A_5c_{aahh}^2+($	$A_6c_{tt}+A_7c_{tt}$	$c_t c_{hhh}) c_t^2$

$$+ (A_8c_tc_{hhh} + A_9c_{ggh}c_{hhh})c_{tt} + A_{10}c_{tt}c_{gghh}$$

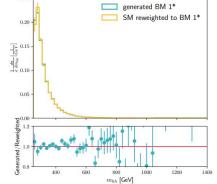
$$+ (A_{11}c_{ggh}c_{hhh} + A_{12}c_{gghh})c_t^2$$

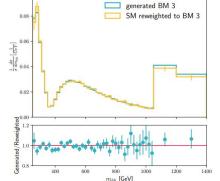
$$+ (A_{13}c_{hhh}c_{ggh} + A_{14}c_{gghh})c_tc_{hhh}$$

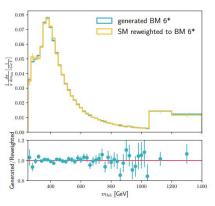

$$+A_{15}c_{aah}c_{aahh}c_{hhh}+A_{16}c_t^3c_{aah}$$

$$+A_{17}c_tc_{tt}c_{aah}+A_{18}c_tc_{aah}c_{hhh}$$

$$+A_{19}c_{t}c_{qqh}c_{qqhh}+A_{20}c_{t}^{2}c_{qqh}^{2}$$


$$+A_{21}c_{tt}c_{qah}^2+A_{22}c_{qah}^3c_{hhh}$$


$$+A_{23}c_{qah}^2c_{gghh}$$



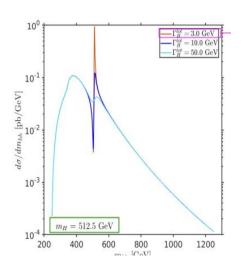
 $\sigma_{hh}^{\mathsf{NLO}} = \mathsf{Poly}(\mathbf{c}, \mathbf{A}) = \mathbf{c}^{\mathsf{T}} \cdot \mathbf{A}$

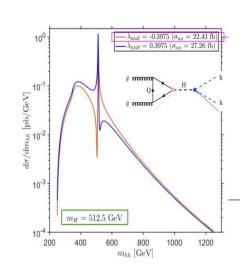
$$W_{\mathsf{HEFT}} = rac{Poly(\mathbf{c}, d\mathbf{A}|m_{hh})}{Poly(\mathbf{c}_{\mathsf{SM}}, d\mathbf{A}|m_{hh})}$$

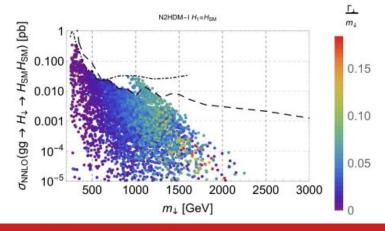
Further information in the upcoming note!

Model/Interpretation benchmark for BSM model

Working towards a more coherent description of possible BSM benchmark/model to be used by the


experiment


Defined tasks from HH subgroup meeting


- Interest to extend resonant searches to include large width/interference effects [motivated from several BSM models]
- Interferences in a model independent** way → dependence with trilinear, yukawas, masses, widths...

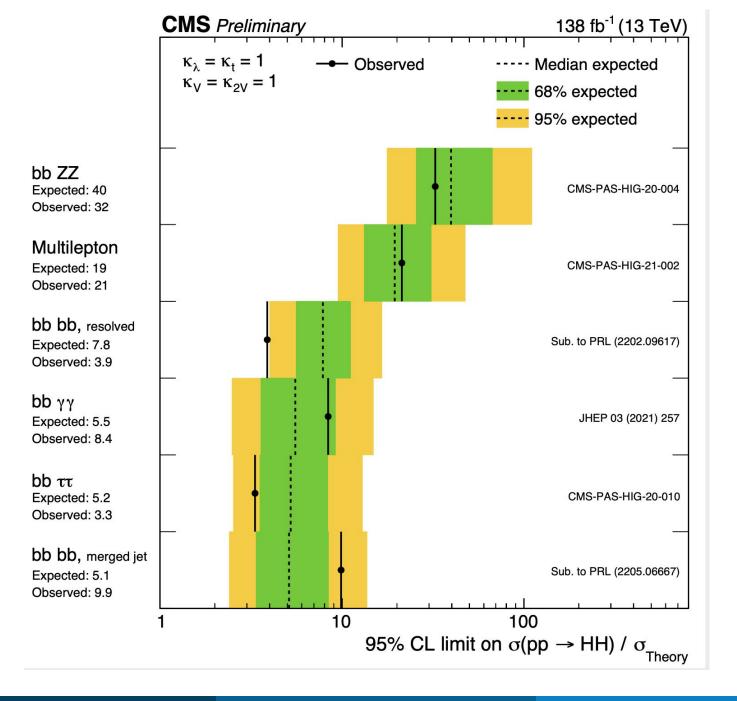
Tasks:

- 1) Get the allowed maximum res. prod. XS (pp → H → h_SM h_SM) for mass values of the resonance, and ranges of pertinent parameters around these maxima
- 2) What is the differential distributions dependence on these parameters [(R2HDM Katerina's talk)]
- 3) Implement models for MC generators to simulate these signals

First task - preliminary results

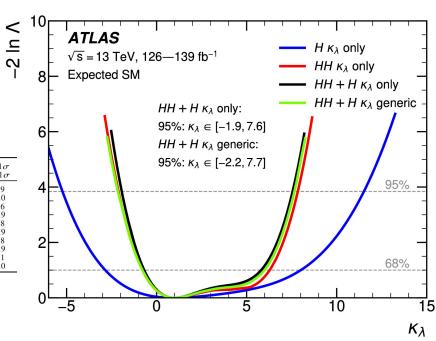
N2HDM-I (H2 as res. of interest):

	mH2 [GeV]	max_ggH2_H1H1 [pb]	max_ggH3_H1H1 [pb]	max_ggH1H1 [pb]	min_klambda	max_klambda	min_lam112 [GeV]	max_lam112 [GeV]	min_wH2/mH2	max_wH2/mH2
0	260	0.677723	0.194092	0.692520	-0.865330	0.998518	-181.844443	374.263122	0.000001	0.082465
1	500	0.047687	0.039810	0.134563	-1.189243	0.996701	-302.660704	588.105417	0.000372	0.077238
2	1000	0.031336	0.006275	0.241003	0.011330	1.805244	342.039096	1938.246190	0.005833	0.086758
3	1500	0.002797	0.000408	0.152712	0.000074	1.193269	578.683146	3049.620909	0.007911	0.167155
4	2000	0.000236	0.000034	0.149369	0.003549	1.091706	641.205453	4924.857333	0.007941	0.274927
5	2500	0.000020	0.000002	0.067509	0.305984	0.957961	570.130128	2454.286271	0.003424	0.061114


- Larger widths allowed → NWA not valid anymore
- κ_λ can be 0

See also <u>arxiv:2112.12515</u>

Thank you for your attention and stay tuned for new results!



arXiv:2211.01216

Combination assumption	Obs. 95% CL	Exp. 95% CL	Obs. value $^{+1}_{-1}\sigma$
HH combination	$-0.6 < \kappa_{\lambda} < 6.6$	$-2.1 < \kappa_{\lambda} < 7.8$	$\kappa_{\lambda} = 3.1^{+1.9}_{-2.0}$
Single-H combination	$-4.0 < \kappa_{\lambda} < 10.3$	$-5.2 < \kappa_{\lambda} < 11.5$	$\kappa_{\lambda} = 2.5^{+4.6}_{-3.9}$
<i>HH</i> + <i>H</i> combination	$-0.4 < \kappa_{\lambda} < 6.3$	$-1.9 < \kappa_{\lambda} < 7.6$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
$HH+H$ combination, κ_t floating	$-0.4 < \kappa_{\lambda} < 6.3$	$-1.9 < \kappa_{\lambda} < 7.6$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
$HH+H$ combination, κ_t , κ_V , κ_b , κ_τ floating	$-1.4 < \kappa_{\lambda} < 6.1$	$-2.2 < \kappa_{\lambda} < 7.7$	$\kappa_{\lambda} = 2.3^{+2.1}_{-2.0}$

POIs	$\kappa_V^{+1}\sigma_{-1}\sigma$	$\kappa_{t-1\sigma}^{+1\sigma}$	$\kappa_{b}^{+1}_{-1}\sigma$	$\kappa_{\tau}^{+1\sigma}_{-1\sigma}$	$\kappa_{\lambda_{-1}\sigma}^{+1\sigma}$	κ _λ [95% CL]	
κ_{λ}	1	1	1	1	$3.0^{+1.8}_{-1.9}$	[-0.4, 6.3]	Obs.
					$1.0^{+4.8}_{-1.7}$	[-1.9, 7.6]	Exp.
va-v fit	1	$1.00^{+0.05}_{-0.04}$	1	1	$3.0^{+1.8}_{-1.9}$	[-0.4, 6.3]	Obs.
κ_{λ} - κ_{t} fit		$1.00^{+0.04}_{-0.04}$			$1.0^{+4.8}_{-1.7}$	[-1.9, 7.6]	Exp.
Generic fit	$1.00^{+0.05}_{-0.05}$	$0.93^{+0.07}_{-0.06}$	$0.90^{+0.12}_{-0.11}$	$0.93^{+0.08}_{-0.07}$	$2.3^{+2.1}_{-2.0}$	[-1.4, 6.1]	Obs.
Generic nt	$1.00^{+0.05}_{-0.05}$	$1.00^{+0.07}_{-0.07}$	$1.00^{+0.12}_{-0.12}$	$1.00^{+0.08}_{-0.08}$	$1.0^{+5.0}_{-1.8}$	[-2.2, 7.7]	Exp.