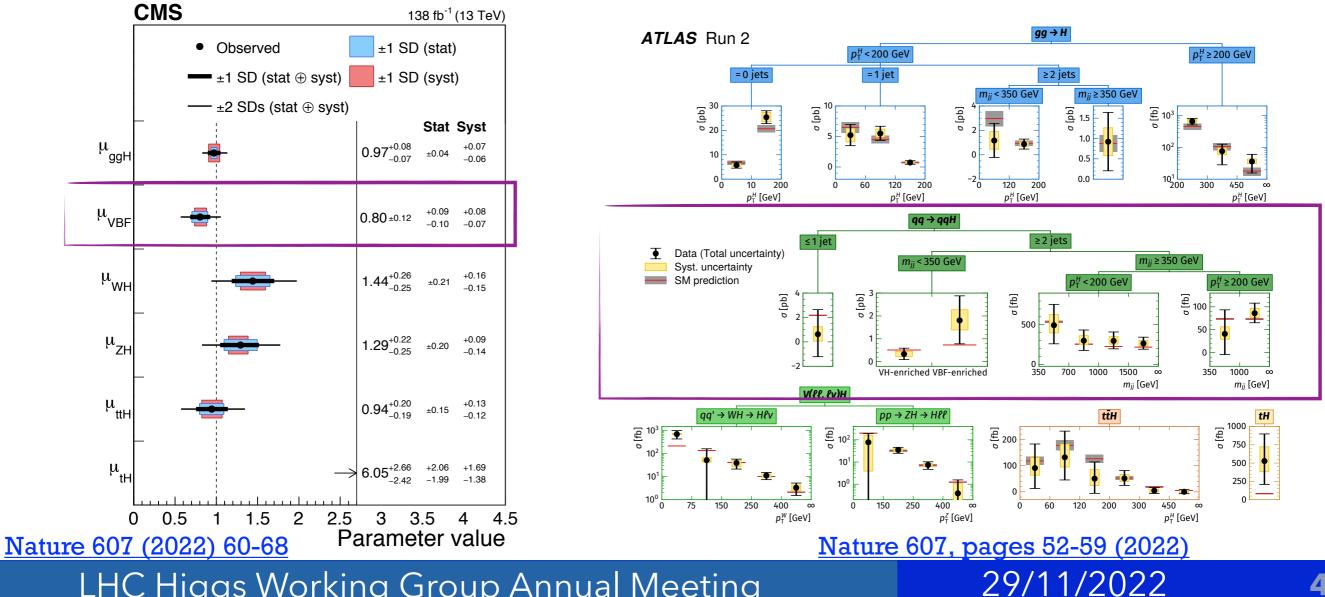
Overview of VBF activities

Gaetano Barone, <u>Stephane Cooperstein</u>, Silvia Ferrario Ravasio, Mathieu Pellen, Simon Plätzer

Overview

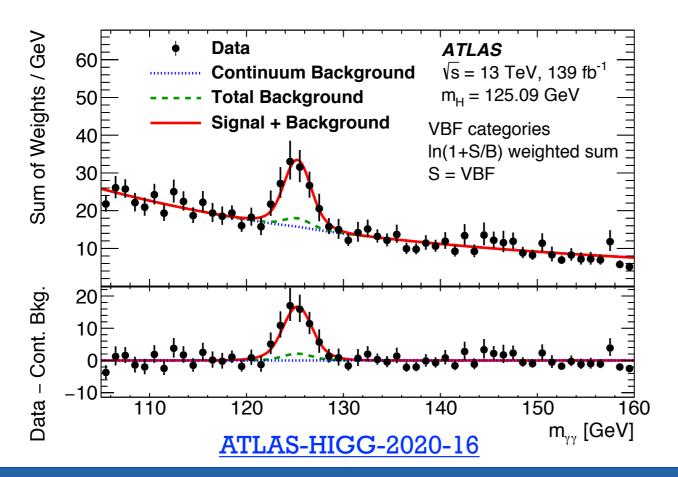
- Summary of October VBF workshop at CERN and review of the field.
- Updated predictions:
 - Inclusive cross sections @13.6 TeV
 - Follow-up study on differential distributions (fixed order, maybe NLO+PS)
- Future near-term projects:
 - Parton shower modeling and uncertainties
 - Overlap with ggF
 - Prescription to apply NNLO QCD and NLO EW to event generators
 - ...

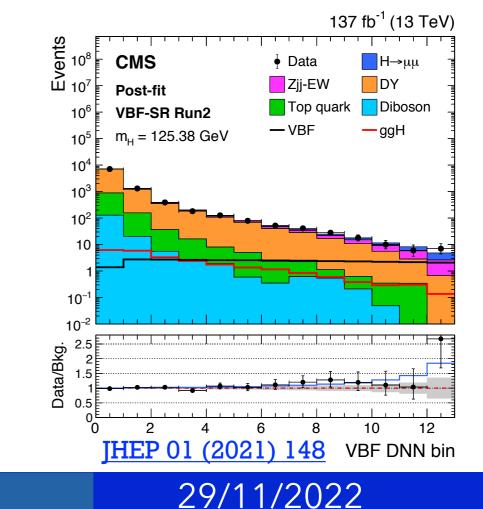

Workshop overview

- Three-day workshop at CERN Oct. 19-21 (<u>link to indico</u>), aiming to foster exchanges/ projects between theorists and experimentalists related to VBF.
 - 59 registered participants, ~half in person.
 - A big thank you to Alexander Karlberg for helping to organize along with VBF conveners.
 - And the theory department in general for their support (coffee breaks and hotel prebooking).
- Three sessions with invited speakers:
 - State of the art: Run-2 measurements and progress in theory
 - *Parton shower*: limitations for measurements and overview from theory perspective
 - *Future*: looking towards the next years (experiment and theory)
- Additional session featuring submitted abstracts
- Many fruitful discussions! I will try to briefly summarize here...

29/11/2022

State of the art


- Both experiments nearing ~10% precision on inclusive VBF H cross section
 - \Rightarrow first years of precision era for VBF H measurements.
- Statistical and systematic uncertainties similar in magnitude, with substantial uncertainty contribution from theory
 - \Rightarrow to make the most of the data in the years to come, we need innovation on multiple fronts.



VBF measurements by channel

- VBF measurements by channel are highly varied:
 - Different p_T(H), m_{jj} regions depending on background
 - Different analysis strategies depending on main deliverables, primary uncertainties.
- Theory uncertainties impact some channels more than others, but systematic uncertainties in general will eventually limit most of the main VBF measurement channels at the LHC.

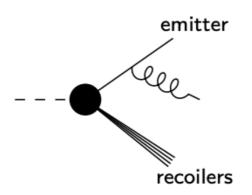
	μ _{νв} =σ/σ _{sm}	Δμ _{STAT}	Δμ _{syst}	
Η→ττ	0.81+0.17-0.16	±0.14	±0.10	
H→WW	0.71+0.28-0.35	±0.20	±0.16	
Н⊸үү	1.04+0.34-0.31	±0.31	+0.16 _{-0.09}	
H→ZZ	0.48+0.48-0.38	+0.46 _{-0.37}	+0.14_0.10	
H→bb	0.92 ^{+0.45} -0.39	±0.32	+0.310.22	
Н→µµ	1.36+0.69-0.61	(dominant)		

LHC Higgs Working Group Annual Meeting

Typical VBF uncertainties

- Primary theory uncertainties impacting VBF measurements are:
 - Parton shower: leading impact, focus of next slides
 - ggF contribution in VBF-enriched region.
- Other theory uncertainties (PDF, QCD scale for VBF signal, ...) are largely negligible.

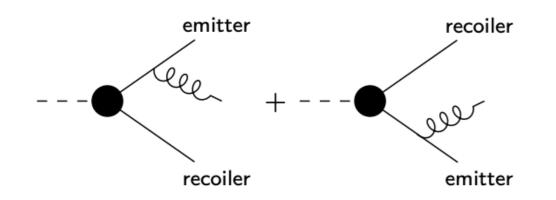
General overview of VBF theory uncertainty sizes in typical VBF measurements*

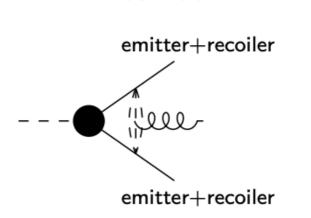

	VBF H	ggH (in VBF- enriched region)		
PDF	<1%	<3%		
QCD scale	<1%	2-20%		
UE	<1.5%	<2-3%		
Parton shower	2-15%	4-10%		

*numbers borrowed from workshop (R. Gerosa)

29/11/2022

Parton shower descriptions


Slide borrowed from workshop (C. Preuss)

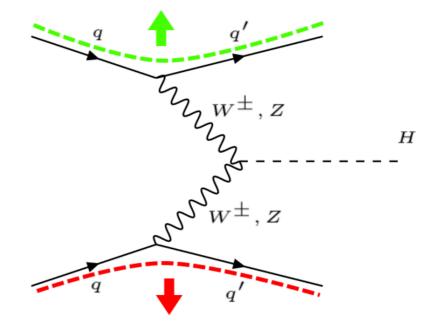


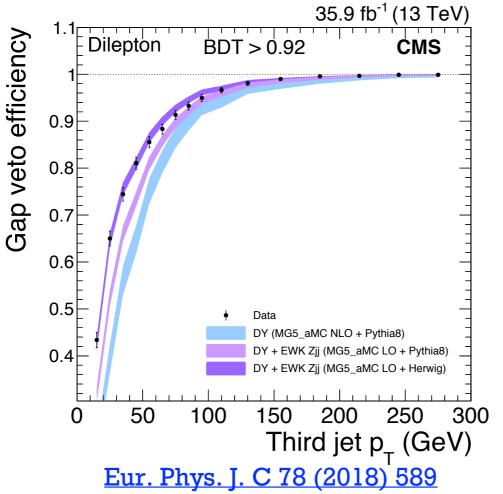
PYTHIA simple shower, HERWIG \tilde{q}

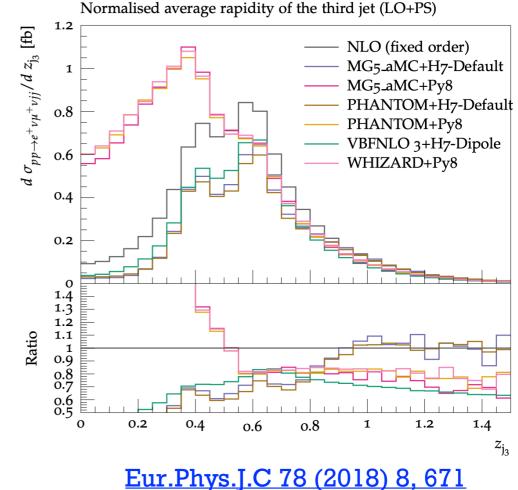
- recoil independent of colour partners
- coherent upon angular ordering

Antennae

- e.g. SHERPA CSS, HERWIG dipole, DIRE
 - recoil taken by opposite dipole end
 - intrinsically coherent

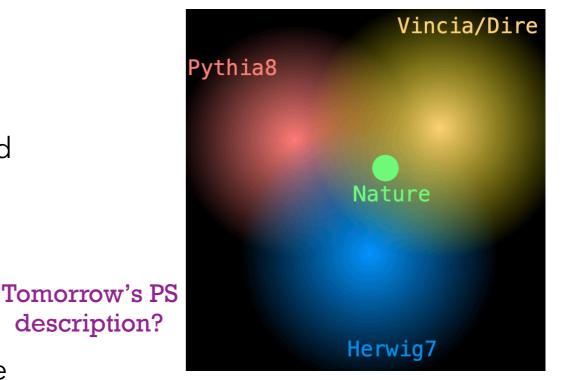

- e.g. ARIADNE, VINCIA
 - both parents absorb transverse recoil

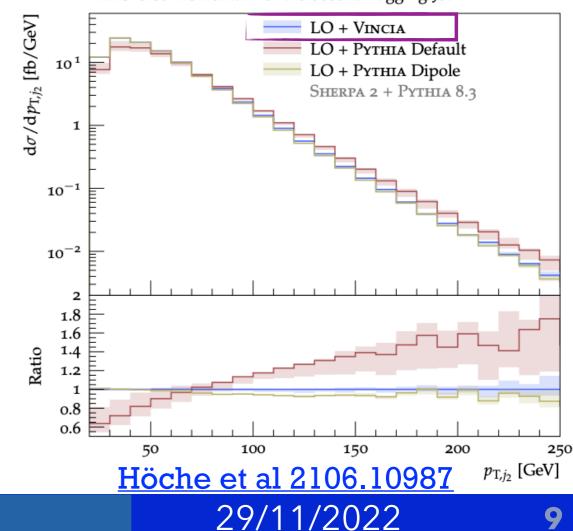

29/11/2022


intrinsically coherent

Parton shower in VBF

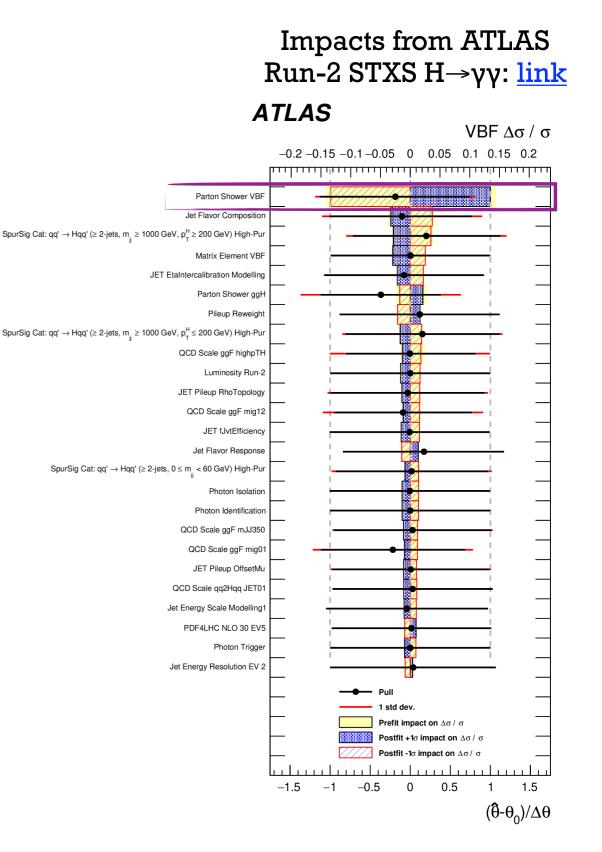
- Understood during Run-2 that PYTHIA default does not accurately model VBF processes, with large effects:
 - Experimentally confirmed by CMS EW [W/Z]jj measurements with 2016 data.
 - "dipole recoil" scheme implemented in PYTHIA with more theoretically accurate description.
- Very active area of discussion in the last years where do we stand today?




29/11/2022

VBF PS algorithms on the market today

- Run-2 consensus: derive PS uncertainty from twopoint comparison of PYTHIA with dipole recoil and HERWIG.
 - Both give similar level of agreement to fixed order NNLO prediction.
- Antenna shower available in VINCIA, which can be interfaced with PYTHIA.
 - Shown to agree quite well with dipole shower.
- Multiple VBF H PS options available today, with no clear consensus from theory on best way to assess the uncertainty:
 - Each algorithm has its limitations, but a priori each is similarly accurate, closes with fixed order.



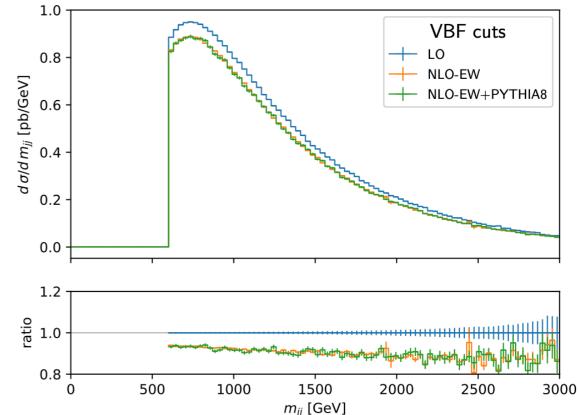
Transverse Momentum of the Second Tagging Jet

Why it matters

- PS uncertainty derived from symmetrized two-point Pythia dipole vs. Herwig7 can impact VBF measurement by as much as 15%.
- The PS uncertainty for VBF H seems likely to dominate theory (and total systematic?) uncertainty for the years to come.
- Depending on the developments in the next years, we may soon be limiting the reach of our VBF H measurements.
 - Not only in terms of the theoretical precision, but also in how best to implement the PS uncertainty.

29/11/2022

Contributed talks


- Variety of topical contributions highlighting various developments in the field:
 - Deep learning techniques in VBFH searches in $H \rightarrow inv$ (*Vishal Singh Ngairangbam*)
 - Experimental falsification of SMEFT (*Alexandre Salas-Bernárdez*)
 - Looking at VBF processes from a polarisation perspective (*Giovanni Pelliccioli*)
 - Towards WBF with realistic final states and anomalous couplings at NLO (*Konstantin Asteriadis*)
 - High Energy Jets (HEJ) applied to inclusive Higgs+jets production (*Jérémy Paltrinieri*)
 - A sensitivity study of VBF-V to dimension-6 EFT operators at the LHC (*Flavia Cetorelli*)
 - Experimental potential on CP sensitive STXS splitting. (*Benedict Tobias Winter*)
 - Electroweak corrections and shower effects to Higgs production in association with two jets at the LHC (*Johannes Scheller*)
- I will highlight a couple examples...

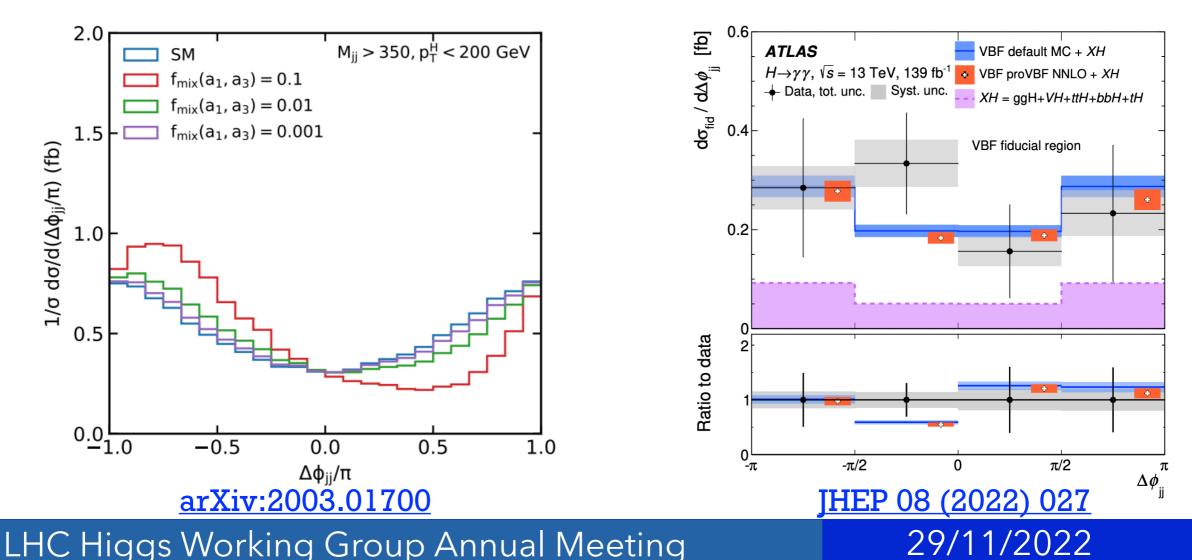
NLO-EW differential corrections

- New NLO EW differential corrections available this year.
 - Prescription to use NLO EW and NLO QCD corrections with PS.
- An important development towards Run-3 measurements and beyond, as we further probe VBF at higher p_T/ large m_{jj}..

Implementation of the POWHEG Process

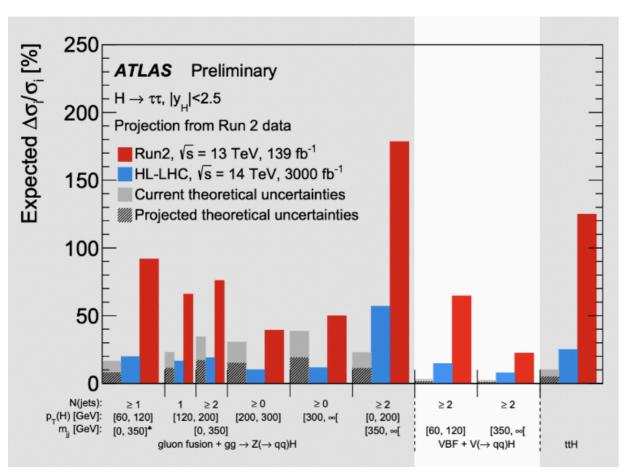
- Based on **POWHEG BOX RES**
- Full EW production process of H + 2J
- Either NLO-QCD or NLO-EW corrections
- Resonance-aware formalism allows for multi-channel phase space
- **RECOLA** amplitudes
- Interface for matching to $\ensuremath{\texttt{PYTHIA8}}$ (8.240)
 - $\circ~$ QCD shower with NLO-QCD corrections
 - QED shower with NLO-EW corrections

*borrowed from workshop (J. Scheller)

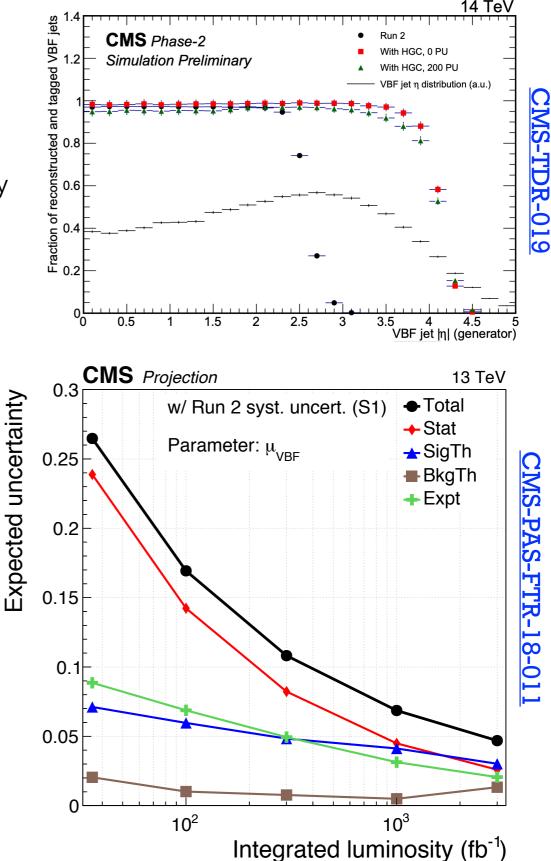

LHC Higgs Working Group Annual Meeting

JHEP09(2022)191

29/11/2022

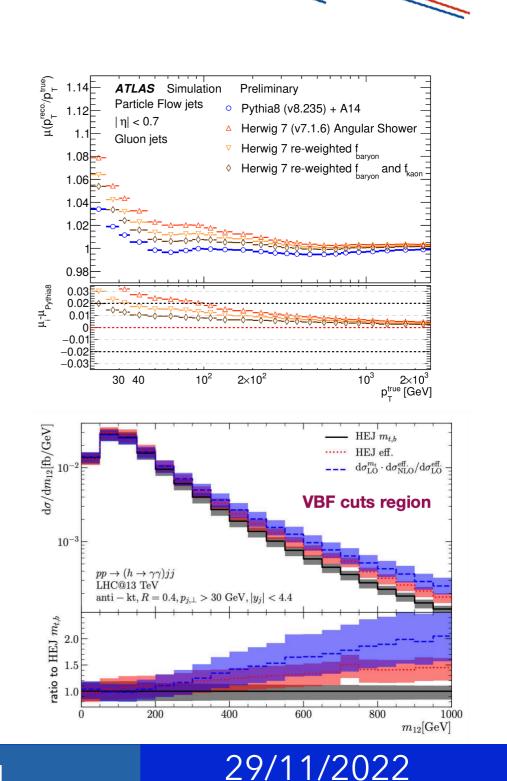

Probing CP in VBF production

- Angular separation between the VBF-tagged jets is affected by modifications to the H-VV vertex CP structure.
 - An alternative production-side CP probe in addition to $H \rightarrow ZZ$ (from decay).
- ATLAS Run-2 $H \rightarrow \gamma \gamma$ measured unfolded $\Delta \phi(jj)$ distribution in VBF-enriched region, following initial proposals from Les Houches 2019.
- For Run-3 (and beyond), likely to include coarse binning in $\Delta \varphi(jj)$ to probe asymmetries/CP.


Looking towards the future: experiment

- Beyond factor 2-3 improvement in statistics from Run-3, HL-LHC will reduce VBF measurement uncertainties to the level of a few to 5%.
- To fully take advantage of these datasets, we have plenty of work to do in:
 - Understanding and calibrating new highly complex detectors in a very high pileup environment.
 - Reducing experimental uncertainties.

ATL-PHYS-PUB-2022-018



29/11/2022

Looking towards the future: theory

- "VBF is among those processes which challenge predictions at all scales and all levels of detail"
 - From Simon's <u>talk at the workshop</u>
- Avenues for development on many fronts:
 - Accuracy of parton showers
 - Challenges in matching and merging
 - Jet vetos & non-global observables
 - High-energy effects
 - Soft QCD effects.
 - . . .
- Making progress, but still plenty to do to understand effects at the ~percent level.

Updated predictions: inclusive cross section

- Finishing calculation of VBF H inclusive cross section @13.6 TeV.
 - N3LO QCD from proVBFH (update by Karlberg)
 - NLO EW from <u>HAWK</u> (update by Denner, Dittmaier, Mück)
- Today we show just the N3LO QCD, but NLO EW corrections are ready too and just need to be combined.

VBF (N3LO QCD)									
MH	Cross	Uncertainty							
	Section	Scale		TU	PDF+as	PDF	as		
[GeV]	[pb]	pos [%]	neg [%]	[%]	[%]	[%]	[%]		
120.00	4.473	0.1	-0.1		±2.2	±2.1	±0.4		
122.00	4.402	0.1	-0.1		±2.2	±2.1	±0.4		
124.00	4.333	0.1	-0.1		±2.2	±2.1	±0.4		
124.60	4.313	0.1	-0.1		±2.2	±2.1	±0.4		
124.80	4.306	0.1	-0.1		±2.2	±2.1	±0.4		
125.00	4.299	0.1	-0.1		±2.2	±2.1	±0.4		
125.09	4.296	0.1	-0.1		±2.2	±2.1	±0.4		
125.20	4.292	0.1	-0.1		±2.2	±2.1	±0.4		
125.30	4.289	0.1	-0.1		±2.2	±2.1	±0.4		
125.38	4.286	0.1	-0.1		±2.2	±2.1	±0.4		
125.60	4.279	0.1	-0.1		±2.2	±2.1	±0.4		
126.00	4.265	0.1	-0.1		±2.2	±2.1	±0.4		
128.00	4.199	0.1	-0.1		±2.2	±2.1	±0.4		
130.00	4.135	0.1	-0.1		±2.2	±2.1	±0.4		

LHC Higgs Working Group Annual Meeting

Differential cross sections

- Important to calculate differential/fiducial VBF cross sections as well:
 - VBF measurement regions include selections on m_{jj} , $p_T(j)$, $|\Delta Y(jj)|$, ...
 - Large overlap with VH at low m_{jj}, validity of VBF approximation, etc.
- Calculate variety of N-dimensional differential distributions:
 - Single-differential distribution for $p_T(H)$
 - Double differential:
 - m_{jj} vs. p_T(H)
 - m_{jj} vs. |Δφ(jj)|
 - m_{jj} vs. |ΔY(jj)|
 - p_T(H) vs. |ΔY(jj)|
 - p_T(H) vs. N_{jet}
 - Triple differential:
 - m_{jj} vs. $p_T(H)$ binning of STXS x 2 bins in $\Delta \phi(jj)$ (0, $\pi/2,\pi$)
 - STXS binning for m_{jj} and $p_T(H)$, 4-6 bins for other distributions.
- Work in progress...

LHC Higgs Working Group Annual Meeting

- Calculations provided for two selection regions:
 - STXS selections: |η(j)|<4.7, p_T(j)>25/30 GeV.
 - STXS selections + m_{jj} >300 GeV, |ΔY(jj)|>2.0

29/11/2022

Parton shower description and uncertainties

- First of all, need to make sure that experiments follow correct prescriptions:
 - PYTHIA this year released a set of PS for VBF instructions <u>here</u>, would be nice to have for other PS algorithms as well.
- Both experiments currently plan to implement VBF PS uncertainty for Run-3 analyses as symmetrized two-point Pythia dipole vs. Herwig7 difference.
 - Resulting uncertainty can impact the VBF measurement by as much as 10-15%, and can have a significant impact on the measurement(s).
- Any ideas welcome for how to better define this uncertainty band
 - An active discussion point going forward
 - Keep in mind that if we want to update the prescription for the Run-3 measurements we need to act soon (things take time!).

Applying NNLO QCD and NLO EW to event generators

- Current state of the art for VBF H:
 - NLO EW + PS: <u>JHEP09(2022)191</u>
 - NNLO QCD: <u>PRL.115.082002</u>, <u>Phys.Lett.B 781 (2018) 672-677</u>, <u>JHEP02 (2022) 046</u>
 - NLO QCD + PS (any general MC)
- But no prescription yet for NLO QCD + NLO EW with PS for VBF.
 - Possibly coming soon, would be great to have a recipe for approximating NNLO QCD corrections as well.
 - NNLO QCD + NLO EW with PS is a longer-term challenge.
- Must in parallel continue to work on improving description of parton shower.
 - Can first be studied in the strict VBF approximation without need for cuts, and then go beyond.

Reducing ggF uncertainties in VBF

- Sub-leading theory uncertainties from ggF contribution to VBF-enriched region
 - Typically large theory uncertainties on the ggF prediction in this phase space
 - Typical ggF contribution in VBF-enriched measurement region is 10-20%.
- Active area of development in theory:
 - See for example recent comparative study of predictions in VBF-like regions, including at high-p_T(H)¹.
 - Further work is needed to better disentangle and understand ggF contamination.
 - See for example J. Paltrinieri's <u>dedicated talk on HEJ</u> at the workshop
- On the experimental side, important to rely on predictions at highest possible precision in ggF+2-jet region and not only inclusively.
 - i.e. ggF+2-jet at NLO via amc@NLO, HJMiNNLO, HERWIG with NLO matching + multijet merging, ...

[1] <u>JHEP11(2021)108</u>

20

29/11/2022

Summary

- We are entering the precision era for VBF H, with STXS/differential measurement possible in multiple decay channels.
- Systematic uncertainties, which include a substantial theory component, are approaching the size of statistical uncertainties in many of the main VBF measurement channels.
 - The parton shower description and uncertainty are the most important issue going forward, and any ideas/development there will have a clear impact towards Run-3 and beyond.
 - Now is the time to make the developments that can/will be used for the Run-3 legacy measurements.
- Improving the predictions for VBF requires developments on multiple fronts.
 - Important to make sure that experiments are also aware and able to implement the latest improvements.
- Clear interplay between developments in theory and experiment:
 - It's not only a matter of reducing the final measurement uncertainty, analysis strategies are to an extent designed because of limitations from uncertainties.

LHC Higgs Working Group Annual Meeting

Additional information

- Welcome to Silvia Ferrario Ravasio replacing Simon Plätzer.
 - And a big thank you to Simon!
- e-group: lhc-higgs-vbf \Rightarrow please subscribe!
- A <u>twiki page</u> is available summarizing the main activities.
- Email us at <u>lhc-higgs-vbf-convener@cernNOSPAMPLEASE.ch</u>

LHC Higgs Working Group Annual Meeting

Additional Material