Offshell Status

Raoul Röntsch (TH), Ennio Salvioni (TH), Rafael Coelho Lopes de Sá (ATLAS), Savvas Kyriacou (CMS)

19th Workshop of LHC Higgs Working Group 29 November 2022

Many thanks to Nikolas Kauer for all his work as Offshell Subgroup convener over the last ~ 8 years!

A Step Back...

... to 2012

• Higgs width predicted in SM $\Gamma_H \simeq 4 {
m MeV}$

* Direct measurement limited by detector resolution $\Gamma_H \lesssim 1~{
m GeV}$

• Sizeable contribution from high-energy regime: 10% of events in $gg \rightarrow H \rightarrow VV$ above the $2m_v$ threshold.

•
$$\sigma_{gg \to H \to VV}^{\text{onshell}} \sim \frac{c_{ggH}^2 c_{VVH}^2}{m_H \Gamma_H} \qquad \sigma_{gg \to H \to VV}^{\text{offshell}} \sim \frac{c_{ggH}^2 c_{VVH}^2}{m_{ZZ}^2}$$

[Kauer, Passarino '12]

[Caola, Melnikov '13]

- Ratio of onshell and offshell production rates gives indirect measurement $\Gamma_H \lesssim 88 \text{ MeV}$ using 7 and 8 TeV data and cut-and-count analysis.
- Included in & improved on by experimental analyses.
- Highlights importance of exploring Higgs in high-energy regime.
- Important dialogue between theory and experiment!

Recent CMS Results

Nature Physics **18**, 1329 (2022) [hep-ex/2202.06923]

- Consider $H \to ZZ \to 4\ell$ and $H \to ZZ \to 2\ell 2\nu$
- Production modes: gluon fusion and electroweak production (VBF and VH)
- Observed evidence for offshell Higgs production at 3.6σ .
- Measure $\Gamma_{H} = 3.2^{+2.4}_{-1.7} \,\,{
 m MeV}$

(assuming same couplings on- and offshell)

• Offshell gluon fusion signal strength:

 $\mu_F^{\rm off.} = 0.62^{+0.68}_{-0.45}$

• Offshell EW signal strength:

 $\mu_V^{\text{off.}} = 0.90^{+0.9}_{-0.59}$ (at 68% C.L.)

Recent ATLAS Results

ATLAS-CONF-2022-068

- Consider $H \to ZZ \to 4\ell$ and $H \to ZZ \to 2\ell 2\nu$
- Production modes: gluon fusion and electroweak production (VBF and VH)
- Observed evidence for offshell Higgs production at 3.2σ .
- Measure $\Gamma_H = 4.6^{+2.6}_{-2.5} \text{ MeV}$

(assuming same couplings on- and offshell)

• Assuming SM width:

$$\begin{split} \kappa_{g,\text{off.}}^2 / \kappa_{g,\text{on.}}^2 &= 1.4^{+0.9}_{-1.3} \\ \kappa_{HVV,\text{off.}}^2 / \kappa_{HVV,\text{on.}}^2 &= 0.9^{+0.4}_{-0.3} \end{split}$$

Recent ATLAS Results

Models and EFT interpretations

LHCHWG-2022-001 [2203.02418]

LHC HIGGS WORKING GROUP^a

PUBLIC NOTE

Off-shell Higgs Interpretations Task Force^b

Models and Effective Field Theories Subgroup Report

Aleksandr Azatov ^{1,2,c}, Jorge de Blas ^{3,d}, Adam Falkowski^{4,e}, Andrei V. Gritsan^{5,f}, Christophe Grojean^{6,7,g}, Lucas Kang^{5,h}, Nikolas Kauer^{8,i} (ed.), Ennio Salvioni^{9,10,j}, Ulascan Sarica^{11,k}, Marion Thomas^{12,1} and Eleni Vryonidou^{12,m}

Universal flat direction in on-shell data:

$$g_{hii} = \kappa_{\text{univ}} g_{hii}^{\text{SM}} \qquad \Gamma_h = \kappa_{\text{univ}}^4 \Gamma_h^{\text{SM}}$$

If presence of untagged partial width $\Gamma_{\rm exo}$ is assumed

Combining with off-shell data lifts this

- Public Note edited by Nikolas Kauer (May 2022)
- Main goal: discuss and advance impact of off-shell measurements on BSM physics
- Mostly in EFT framework
- 56 page document: just some highlights here

Models and EFT interpretations

- Such universal flat direction is possible in BSM, but requires a specific "compensation" effect between Higgs coupling rescaling $\kappa_{univ} > 1$ and new width
- Explore impact of off-shell on more general scenarios: relax coupling universality

Off-shell has leading sensitivity for relatively large $BR_{exo} \gtrsim 0.2$

19th Workshop of LHC HWG 29 November 2022

C.Grojean, E.Salvioni]

EFT interpretations

• Studies within SMEFT: summary of Higgs basis parametrization

0.400

invertible matrix

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i=1}^{2499} C_i Q_i$$

Warsaw basis coefficients

[A.Falkowski]

• Subset of operators relevant for $gg \rightarrow ZZ$ (9 CP-even, 5 CP-odd coefficients)

$$\begin{split} \Delta \mathcal{L} &= \frac{h}{v} \Big(c_{gg} \frac{g_s^2}{4} G^a_{\mu\nu} G^{\mu\nu\,a} - m_t [\underline{\delta y_u}]_{33} \bar{t}_L t_R + \text{h.c.} + \delta c_z \frac{g_Z^2 v^2}{4} Z_\mu Z^\mu + c_{zz} \frac{g_Z^2}{4} Z_{\mu\nu} Z^{\mu\nu} + c_{z\Box} g_L^2 Z_\mu \partial_\nu Z^{\mu\nu} \\ &+ \tilde{c}_{gg} \frac{g_s^2}{4} G^a_{\mu\nu} \widetilde{G}^a_{\mu\nu} + \tilde{c}_{zz} \frac{g_Z^2}{4} Z_{\mu\nu} \widetilde{Z}_{\mu\nu} \Big) - g_Z (\delta g_L^{Zu})_{33} Z_\mu \bar{t}_L \gamma^\mu t_L - g_Z (\delta g_R^{Zu})_{33} Z_\mu \bar{t}_R \gamma^\mu t_R \\ &- \frac{m_t}{4v^2} \Big(1 + \frac{h}{v} \Big) \Big(g_s \bar{t}_R \sigma^{\mu\nu} T^a [\underline{d}_{Gu}]_{33} t_L G^a_{\mu\nu} + g_Z \bar{t}_R \sigma^{\mu\nu} T^a [\underline{d}_{Zu}]_{33} t_L Z_{\mu\nu} \Big) + \text{h.c.} \end{split}$$

No real "signal" vs "background" distinction:

motivated new physics can appear in Higgs diagrams, box diagrams, or both

19th Workshop of LHC HWG 29 November 2022

EFT interpretations

 Begin systematic assessment of impact of EFT operators in off-shell region, using SMEFT@NLO and JHUGen+MCFM

• SMEFT@NLO: $d\sigma/dm_{ZZ}$ distributions for bosonic and 2-fermion operators

Important interplay with other measurements (on-shell Higgs, top, EW precision): incorporate constraints from global fits

19th Workshop of LHC HWG 29 November 2022

EFT interpretations

- Begin systematic assessment of impact of EFT operators in off-shell region, using SMEFT@NLO and JHUGen+MCFM
- JHUGen+MCFM: include also EW production

Focusing on hVV modifications (Higgs basis):

[A.Gritsan, L.Kang, U.Sarica]

[Gritsan et al. 2002.09888]

19th Workshop of LHC HWG 29 November 2022

EFT interpretations: plans

• Goal: for each SMEFT operator that can in principle contribute to off-shell region, assess impact after accounting for constraints from other measurements

--> systematically identify EFT directions where off-shell has most competitive sensitivity

- Start from simple observables (ex.: *m_{VV}*), then focus on most relevant subset of operators and study more refined approach
- Fully understand interplay of ggF versus EW productions
- Estimates of higher order corrections in SMEFT?
- Complementarity of generators: for *CP*-odd effects need JHUGen+MCFM, for *ttZ* and dipoles need SMEFT@NLO
- Basis translations using Rosetta and JHUGenLexicon
- Suggested timeline: Summer 2023. Slides of kick-off discussion (Nov 16) available at:

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHWGOFFSHELL

Offshell Higgs calculations

- Need to consider:
 - Signal $gg \to H^* \to VV$
 - Background $gg \rightarrow VV$
 - Interference
 - Full (physical) result S+B+I

 $|A_{ZZ}|^2 = |A_s|^2 + |A_b|^2 + 2\operatorname{Re}[A_s A_b^*] \rightarrow \sigma_{\text{full}} = \sigma_{\text{sigl}} + \sigma_{\text{bkgd}} + \sigma_{\text{intf}}$

19th Workshop of LHC HWG 29 November 2022

Higher order corrections: Status

- Corrections to background $gg \rightarrow VV$ very difficult to compute!
- Two-loop QCD amplitudes for $gg \rightarrow ZZ$ and $gg \rightarrow WW$ including massive quark effects now known.

[Agarwal, Jones, von Manteuffel ('20); Brønnum-Hansen, Chen ('20,'21)]

- Substantial computing resources required: still not used in cross section calculations...
- Exact NLO corrections to $gg \rightarrow H \rightarrow VV$ still not known:
 - Approximations in heavy top limit or with reweighting of two-loop amplitudes.

[Campbell, Czakon, Ellis, Kirchner ('15); Caola, Dowling, Melnikov, RR, Tancredi ('15); Grazzini, Kallweit, Wiesemann, Yook (19, '20, '21)

- Matched to parton showers in POWHEG-BOX.

[Alioli, Ferrario Ravasio, Lindert, RR ('21)]

Higher Order Corrections: Jet Merging

- Radiative corrections taken into account using jet merging:
 - Up to 1 or 2 jets, generated according to matrix elements.
 - Virtual corrections not included.
- PS matching:
 - Hardest jet generated according to matrix elements.
 - Softer jets generated through PS.
 - Virtual corrections included.
- Combined study of jet merging and parton shower effects.
- Recent meeting in October.

Jet Merging and Parton Shower Matching

Highlight two studies:

- $gg \rightarrow (H^*) \rightarrow WW + 0/1 \text{ j}$ generated with SHERPA 2.2.2.
- Merged using MLM merging.
- Fixed order k-factors applied to m_{WW} distribution at LO (generated with MG5+PYTHIA)

→ NLO sample differential in m_{WW}

- SHERPA sample reweighted to $m_{\scriptscriptstyle WW.}$
- Done separately for signal (S), background (B) and S+B+interferfence (SBI).

1-D reweighting looks promising...

Talk by B. Kortman

Jet Merging and Parton Shower Matching

• Compare reweighted 0+1 jet merged SHERPA samples against POWHEG-BOX-gg4l+PHYTHIA.

- Not more than 5% difference in normalized distributions.
- Further studies: compare parton shower and merging scale uncertainties; compare samples in different jet multiplicities,

Talk by B. Kortman

Jet Merging and Parton Shower Matching

Events Powheg + Pythia LO $gg \rightarrow (H^{*}) \rightarrow ZZ \rightarrow 4\ell$ 10³ Sherpa LO(0+1) $\sqrt{s} = 13 \text{ TeV}$ L = 139 fb⁻¹ QSF⊕CKKW uncertainty • Preliminary comparisons for $gg \to (H^*) \to ZZ$ Powheg + Pythia NLO Preliminary NLO scale uncertainty 10² 10 Very large jet merging uncertainty, much smaller NLO uncertainty. Unc 1.0 Shape of merged 0+1jet similar to that of 0.5 NLO+PS. Ratio to LO Merging uncertainty is one of main systematics in recent ATLAS measurement - NLO+PS 250 300 350 150 200 400 could lead to improved measurements. mzz [GeV]

Offshell Higgs simulation in CMS

[CMS Note] Talk by U. Sarica

Comparison of parton shower tools:

- LO generator with k-factors + parton shower:
 - > LO samples from JHUGen/MCFM for signal, background and interference.
 - > Apply NNLO signal k-factors for m_{zz} & N3LO normalization.

(Assumption: k-factors similar across signal, background and interference.)

- ➤ Generate jets using PYTHIA.
- NLO generator + parton shower:
 - NLO samples for Higgs production from POWHEG using different Higgs masses, reweighted to NNLO in m_{zz}.
 - ▷ Decay $H \rightarrow ZZ$ from JHUGen.
 - ➤ Generate jets using PYTHIA.
 - > Reweighting of propagator to m_{H} = 125 GeV using MELA.

Offshell Higgs simulation in CMS

19th Workshop of LHC HWG 29 November 2022

Offshell Higgs simulation in CMS

- Decent agreement for VBF-like topology.
- Disagreement for VH-like topology.

Summary

- Incredible progress in offshell studies over last decade:
 - ATLAS and CMS have evidence for offshell production.
 - ATLAS: $\Gamma_H = 4.6^{+2.6}_{-2.5} \text{ MeV}$ CMS: $\Gamma_H = 3.2^{+2.4}_{-1.7} \text{ MeV}$
- Identified relevant EFT operators for offshell production and assessed their impacts.
- <u>Future plans</u>: systematic identification of EFT operators which are most sensitive to offshell effects.
- <u>Work in progress:</u> comparison of simulation tools using parton shower matching and jet merging.
- Welcome new ideas and contributors!
- Twiki

THANK YOU FOR YOUR ATTENTION

Higher Order Corrections: Jet Merging and PS

Use merging to simulate effect of additional radiation.

[Li *et al.* '20] [<u>Talk</u> by C. Li]

- Merging of 0, 1- and 2-jet samples in gluon fusion $gg \rightarrow ZZ$.
- Higgs-mediated diagrams not (yet) included [work in progress].
- Z decay not included yet [work in progress]
- MadGraph for matrix element simulation, matched to Pythia with MLM scheme.

sub-process	core-hour
0-jet	0.085
1-jet	10.9
2-jet	15300

Massive increase in computational time for 2 jet emission!

Higher Order Corrections: Jet Merging and PS

Use merging to simulate effect of additional radiation.

Talk by J. Sandesara

- Includes prompt ZZ production as well as Higgs-mediated ("SBI").
- Leptonic decays included*.
- MLM merging to Pythia.

* 2 jet sample has onshell Z decays and no spin correlations.

