Investigating triple Higgs production in and beyond the SM at proton-proton colliders

Gilberto Tetlalmatzi-Xolocotzi

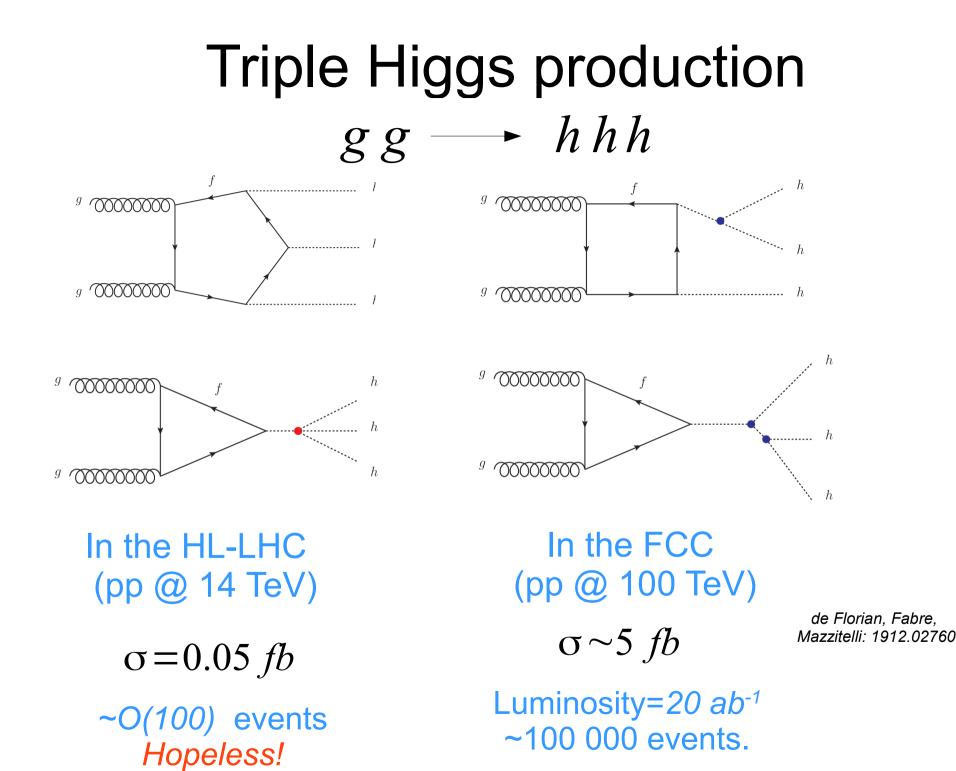
Based on:

A. Papaefstathiou, GTX, M. Zaro: 1909.09166/ Eur.Phys.J.C 79 (2019) 11, 947

A. Papaefstathiou, T. Robens, GTX: 2101.00037/ JHEP 05 (2021), 193

> CPPS, Theoretische Physik 1, Universität Siegen

Laboratoire de Physique des 2 Infinis


Higgs Self-Interactions in the SM

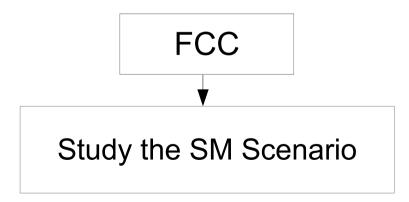
$$V(\Phi^{\dagger}\Phi) = \mu^2 \Phi^{\dagger} \Phi + \lambda_{SM} (\Phi^{\dagger} \Phi)^2$$

$$\Phi = (0, v_0 + h)^T / \sqrt{2}$$

$$V(\Phi^{\dagger}\Phi) \supset \frac{1}{2} m_h^2 h^2 + \lambda_{SM} v_0 h^3 + \frac{\lambda_{SM}}{4} h^4$$

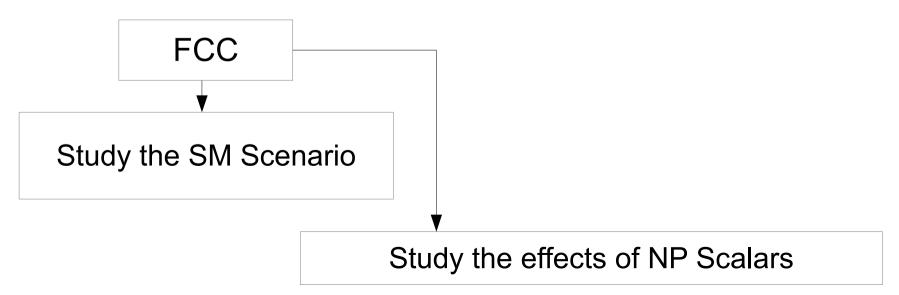
In the SM
$$m_h^2 = \lambda_{SM} v_0^2/2$$
 $v_0^2 = -\mu^2/\lambda_{SM}$

• The triple Higgs self coupling is sensitive to New Particles.

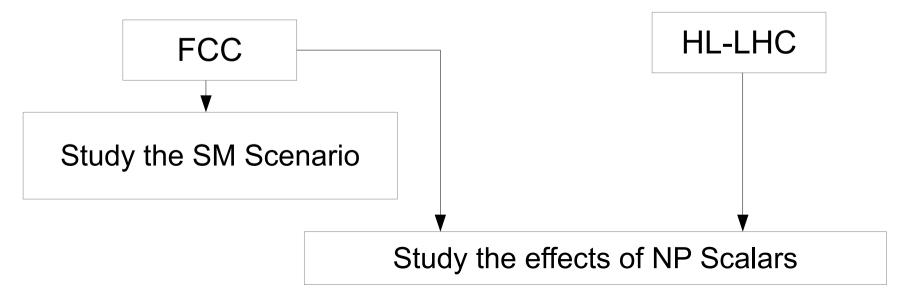

• It allows to test the Higgs quartic self couplings.

• The triple Higgs self coupling is sensitive to New Particles.

• It allows to test the Higgs quartic self couplings.


• The triple Higgs self coupling is sensitive to New Particles.

• It allows to test the Higgs quartic self couplings.


• The triple Higgs self coupling is sensitive to New Particles.

• It allows to test the Higgs quartic self couplings.

• The triple Higgs self coupling is sensitive to New Particles.

• It allows to test the Higgs quartic self couplings.

Final States

 $hhh \longrightarrow X$

Assuming a K-factor of 2

Maltoni, Vryonidou, Zaro: 1408.6542

X (Final State)	Br(%)	N(20 ab⁻¹)	
$(b\overline{b})(b\overline{b})(b\overline{b})$	19.21	22207	Papaefstathiou, GTX, Zaro: 1909.09166
$(b\overline{b})(b\overline{b})(WW_{1l})$	7.20	8328	
$(b\overline{b})(b\overline{b})(\tau\overline{ au})$	6.31	7297	Fuks, Kim, Lee: 1510.07697 1704.04298
$(b\overline{b})(\tau\overline{\tau})(WW_{1l})$	1.58	1824	
$(b\overline{b})(b\overline{b})(WW_{2l})$	0.98	1128	
$(b\overline{b})(WW_{1l})(WW_{1l})$	0.90	1041	Killian et al.: 1702.03554
$(b\overline{b})(\tau\overline{ au})(\tau\overline{ au})$	0.69	799	
$(b\overline{b})(b\overline{b})(\gamma\gamma)$	0.23	263	Papaefstathiou, Sakurai.: 1508.06524 Chen et al :1510.04013

Chen et al.:1510.04013 Fuks, Kim, Lee: 1510.07697

6-b final state has the largest Branching Fraction

This is the channel we are focusing on in this talk

Backgrounds

Process	$\sigma_{\rm NLO} imes { m BR}$ (pb)
$OCD (bar{b})(bar{b})(bar{b})$	52.30
$qar{q} ightarrow hZZ ightarrow h(bb)(bb)$	$4.99 imes10^{-4}$
$qar{q} ightarrow { m ZZZ} ightarrow (bar{b})(bar{b})$	$7.95 imes10^{-4}$
ggF $hZZ ightarrow h(bar{b})(bar{b})$	$1.23 imes 10^{-4}$
ggF $ZZZ \rightarrow (b\bar{b})(b\bar{b})$	$2.73 imes 10^{-5}$
$h(bar{b})(bar{b})$	$1.66 imes 10^{-2}$
$hh(b\overline{b})$	9.11×10^{-5}
$hhZ \rightarrow hh(b\bar{b})$	1.61×10^{-3}
$hZ(bar{b}) ightarrow h(bar{b})(bar{b})$	$1.03 imes 10^{-2}$
$ZZ(b\bar{b}) \rightarrow (b\bar{b})(b\bar{b})(b\bar{b})$	5.74×10^{-2}
$Z(b\bar{b})(b\bar{b}) ightarrow (b\bar{b})(b\bar{b})(b\bar{b})$	1.87

process	$\sigma_{\rm GEN}~({\rm pb})$	$\sigma_{\text{GEN}} \times \mathscr{P}(6 \ b - \text{jets}) \ (\text{pb})$	
$(bar{b})(bar{b})(car{c})$	76.8	0.768	Includes miss-tagging factors
$(bar{b})(car{c})(car{c})$	75.6	0.00756	Taciors
$(c\bar{c})(c\bar{c})(c\bar{c})$	22.5	$22.5 imes 10^{-5}$	
$(bar{b})(bar{b})(jj)$	$1.32 imes 10^4$	1.32	$P_{c \rightarrow b} = 0.1$
$(bar{b})(jj)(jj)$	$9.79 imes 10^5$	0.00979	D = -0.01
(jj)(jj)(jj)	$1.37 imes 10^6$	$1.37 imes 10^{-6}$	$P_{j \rightarrow b} = 0.01$

Details on the study of the 6b final state

- Parton level events (signal/background) generated with MadGraph5_aMC@NLO.
- The main source of background is QCD-6b-Jets.
- The production of the 6b-final state is challenging, it was generated in the <u>NIKHEF and Siegen computer clusters</u> using the gridpack option available in MadGraph5_aMC@NLO.
- Parton shower and non-perturbative effects included with <u>Herwig 7</u>.
- The <u>analysis was performed using HwSim</u>. [*Papaefsathiou*, https://bitbucket.org/andreasp/hwsim]

Selection Analysis

- Require 6 b-tagged jets
- Construct all the possible combinations of 3-pairs of b-jets: I.
- For each combination I calculate the observable

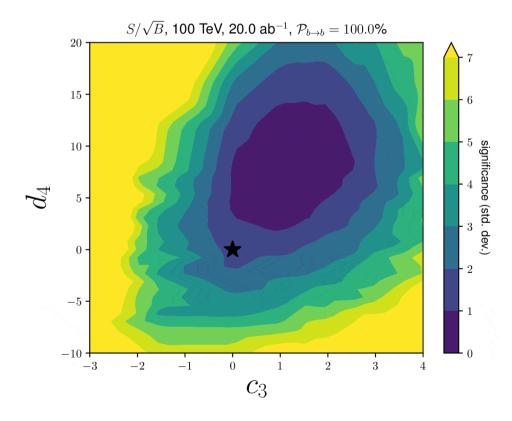
$$\chi^{2,(6)} = \sum_{qr \in I} (M_{qr} - m_h)^2$$

- Select the event based on the value of the combination which minimizes $~\chi^{^{2,(6)}}$
- The combination determining $\chi^{2,(6)}_{min}$ defines the best candidates for the set of 3-Higgs bosons in the event.

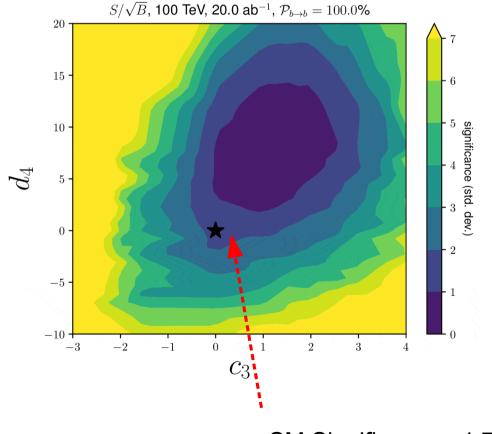
Selection Analysis

Set of observables and optimized cuts applied during the selection analysis

observable	cut
$p_{T,b}$ $ \eta_b $ $\Delta R_{b,b}$ $p_T(h^i)$ χ^2_{\min} $\Delta m_{\min, \min, \min, \max}$ $A P(h^i, h^j)$	> 45 GeV < 3.2 > 0.3 > [170, 120, 0] GeV, $i = 1, 2, 3$ < 17 GeV < 8, 8, 11 GeV < [2, 5, 2, 5, 2, 5] $(i, j) = [(1, 2), (1, 2), (2, 2)]$
$\Delta R(h_r^i,h_r^J) \ \Delta R_{bb}(h^i)$	< [3.5, 3.5, 3.5], (i, j) = [(1, 2), (1, 3), (2, 3)] < [3.5, 3.5, 3.5], i = 1, 2, 3

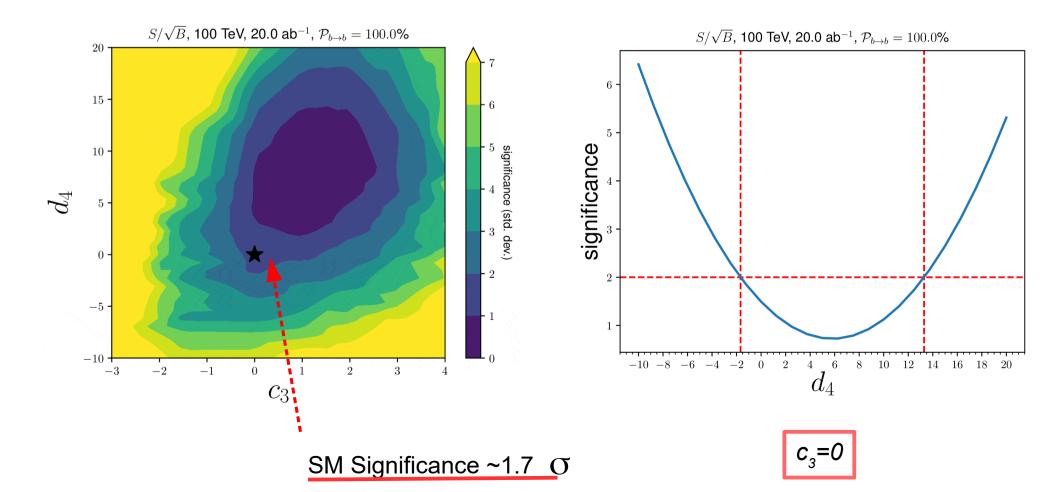

 h_r^i : Higgs boson candidate

i=1,2,3


Consider a generalized version of the SM scalar potential

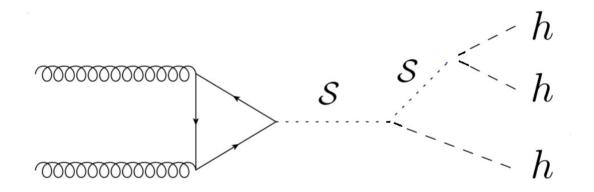
$$V(h) = \frac{1}{2} m_h^2 h^2 + \lambda_{SM} (1 + c_3) v_0 h^3 + \lambda_{SM} \frac{(1 + d_4)}{4} h^4$$

Consider a generalized version of the SM scalar potential $V(h) = \frac{1}{2}m_h^2 h^2 + \lambda_{SM} (1 + c_3) v_0 h^3 + \lambda_{SM} \frac{(1 + d_4)}{4} h^4$



Consider a generalized version of the SM scalar potential $V(h) = \frac{1}{2} m_h^2 h^2 + \lambda_{SM} (1 + c_3) v_0 h^3 + \lambda_{SM} \frac{(1 + d_4)}{4} h^4$

SM Significance ~1.7 O


Consider a generalized version of the SM scalar potential $V(h) = \frac{1}{2} m_h^2 h^2 + \lambda_{SM} (1 + c_3) v_0 h^3 + \lambda_{SM} \frac{(1 + d_4)}{4} h^4$

Adding an Extra-Scalar Singlet The x-SM potential

$$V(\Phi, S) = \mu_{\Phi}^{2} \Phi^{\dagger} \Phi + \lambda_{\Phi} (\Phi^{\dagger} \Phi)^{2} + (\frac{a_{1}}{2}) (\Phi^{\dagger} \Phi) S \qquad \text{Kotwal et al. 1605.06123}$$
$$+ (\frac{a_{2}}{2}) (\Phi^{\dagger} \Phi) S^{2} + (\frac{b_{2}}{2}) S^{2} + (\frac{b_{3}}{3}) S^{3} + (\frac{b_{4}}{4}) S^{4}$$

Mass Eigenstates $h_1 = h \cos \theta + \phi_s \sin \theta$ $S = (\phi_s + v_s)/\sqrt{2}$

Triple Higgs production in the presence of an extra-scalar

Analysis results

Benchmark points which lead to a Strong-First Order EW Phase Transition

Benchmark	$\cos\theta$	$\sin \theta$	m_2	Γ_{h_2}	x_0	λ	a_1	a_2	b_3	b_4	$rac{\sigma(h_1h_1)}{\sigma(hh)_{\rm SM}}$	$rac{\sigma(h_1h_1h_1)}{\sigma(hhh)_{ m SM}}$
			(GeV)	(GeV)	(GeV)		(GeV)		(GeV)		()))))	- () 5 11
B1max	0.976	0.220	341	2.42	257	0.92	-377	0.392	-403	0.77	22.44	60.55
_ B2max	0.982	0.188	353	2.17	265	0.99	-400	0.446	-378	0.69	22.43	56.69
B3max	0.983	0.181	415	1.59	54.6	0.17	-642	3.80	-214	0.16	6.43	3.01
B4max	0.984	0.176	455	2.08	47.4	0.18	-707	4.63	-607	0.85	5.19	3.37
B5max	0.986	0.164	511	2.44	40.7	0.18	-744	5.17	-618	0.82	3.49	2.94
B6max	0.988	0.153	563	2.92	40.5	0.19	-844	5.85	-151	0.083	2.79	3.60
B7max	0.992	0.129	604	2.82	36.4	0.18	-898	7.36	-424	0.28	2.51	4.70
B8max	0.994	0.113	662	2.97	32.9	0.17	-976	8.98	-542	0.53	2.28	4.91
B9max	0.993	0.115	714	3.27	29.2	0.18	-941	8.28	497	0.38	1.98	2.68
B10max	0.996	0.094	767	2.83	24.5	0.17	-920	9.87	575	0.41	1.95	2.35
B11max	0.994	0.105	840	4.03	21.7	0.19	-988	9.22	356	0.83	1.76	1.03

Identification of the	
Extra-scalar at 100 TeV	1

B1max	46.6
B2max	42.9
B3max	2.9
B4max	3.7
B5max	3.0
B 6max	3.8
B7max	5.3
B8max	7.8
B9max	5.9
B10max	4.9
B11max	2.3

Benchmark Significance

Analysis results

Benchmark points which lead to a Strong-First Order EW Phase Transition

Benchmark	$\cos\theta$	$\sin \theta$	m_2	Γ_{h_2}	x_0	λ	a_1	a_2	b_3	b_4	$rac{\sigma(h_1h_1)}{\sigma(hh)_{\rm SM}}$	$rac{\sigma(h_1h_1h_1)}{\sigma(hhh)_{ m SM}}$
			(GeV)	(GeV)	(GeV)		(GeV)		(GeV)			0 (1111/)514
B1max	0.976	0.220	341	2.42	257	0.92	-377	0.392	-403	0.77	22.44	60.55
_ B2max	0.982	0.188	353	2.17	265	0.99	-400	0.446	-378	0.69	22.43	56.69
B3max	0.983	0.181	415	1.59	54.6	0.17	-642	3.80	-214	0.16	6.43	3.01
B4max	0.984	0.176	455	2.08	47.4	0.18	-707	4.63	-607	0.85	5.19	3.37
B5max	0.986	0.164	511	2.44	40.7	0.18	-744	5.17	-618	0.82	3.49	2.94
B6max	0.988	0.153	563	2.92	40.5	0.19	-844	5.85	-151	0.083	2.79	3.60
B7max	0.992	0.129	604	2.82	36.4	0.18	-898	7.36	-424	0.28	2.51	4.70
B8max	0.994	0.113	662	2.97	32.9	0.17	-976	8.98	-542	0.53	2.28	4.91
B9max	0.993	0.115	714	3.27	29.2	0.18	-941	8.28	497	0.38	1.98	2.68
B10max	0.996	0.094	767	2.83	24.5	0.17	-920	9.87	575	0.41	1.95	2.35
B11max	0.994	0.105	840	4.03	21.7	0.19	-988	9.22	356	0.83	1.76	1.03

Identification of the Extra-scalar at *100 TeV*

Benchmark	Significance
B1max	46.6
B2max	42.9
B3max	2.9
B4max	3.7
B5max	3.0
B6max	3.8
B7max	5.3
B8max	7.8
B9max	5.9
B10max	4.9
B11max	2.3

Two Real Singlet Extension of the SM TRSM

Robens, Stefaniak, Wittbrodt: 1908.08554

$$V(\Phi, \phi_i) = V_{SM}(\Phi) + V(\Phi, S, X)$$

Reduce the number of parameters by imposing $\mathbb{Z}_{2}^{S}: S \rightarrow -S, X \rightarrow X$ $\mathbb{Z}_{2}^{X}: S \rightarrow S, X \rightarrow -X$

$$V(\Phi, X, S) = \mu_{\Phi}^{2} \Phi^{\dagger} \Phi + \lambda_{\Phi} (\Phi^{\dagger} \Phi)^{2} + \mu_{S}^{2} S^{2} + \lambda_{S} S^{4}$$

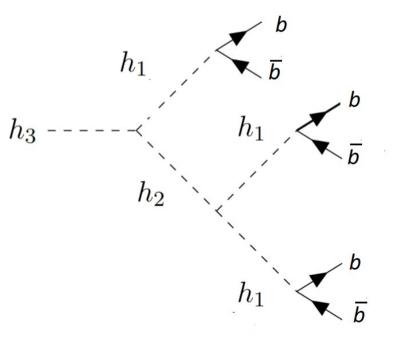
$$+ \mu_{X}^{2} X^{2} + \lambda_{X} X^{4} + \lambda_{\Phi S} \Phi^{\dagger} \Phi X^{2} + \lambda_{SX} S^{2} X^{2}$$
$$S = (\phi_{S} + v_{S})/\sqrt{2}$$

$$X = (\phi_{X} + v_{X})/\sqrt{2}$$

Change to the physical basis

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = R(\Theta_X, \Theta_S) \begin{pmatrix} \phi_h \\ \phi_S \\ \phi_X \end{pmatrix}$$

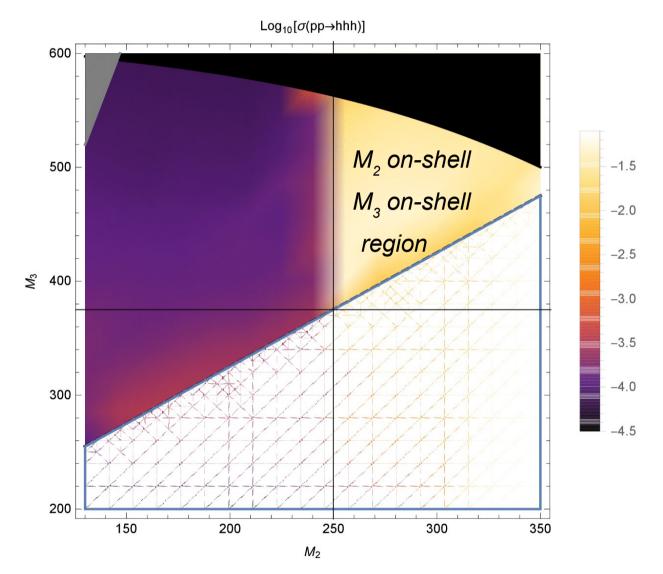
 $h_1 = h$ is the SM Higgs boson


$$M_1 = 125 GeV$$

Free independent parameters $M_{2,}M_{3,}\theta_{hS}$, θ_{hX} , θ_{SX} , v_{S} , v_{X}

Benchmark Scenario of Study BP3

Here we focus in the BP3 Scenario introduced in 1908.08554 which allows for a large $h_1h_1h_1$ production while obeying current theoretical and experimental constraints.


Parameter	Value
M_1	$125.09~{\rm GeV}$
M_2	$[125,\ 500]~{\rm GeV}$
M_3	$[255,\ 650]\ {\rm GeV}$
$ heta_{hS}$	-0.129
$ heta_{hX}$	0.226
$ heta_{SX}$	-0.899
v_S	$140 {\rm GeV}$
v_X	$100 { m GeV}$

We consider the mass hierarchy

 $M_{1} < M_{2} < M_{3}$

Production cross section (LHC)

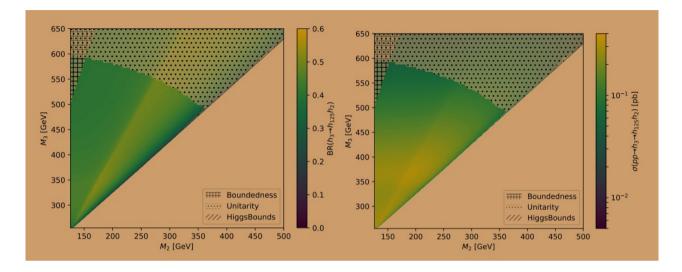
The X-Section can reach up to 50 fb for $M_2 \sim (263, 280)$ GeV and $M_3 \sim 450$ GeV

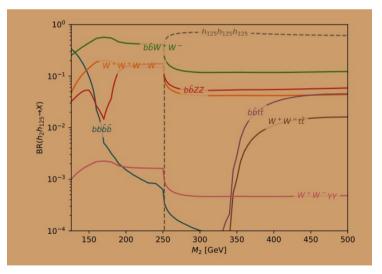
Results

Label	(M_2, M_3)	$\varepsilon_{\mathrm{Sig.}}$	$S _{300 fb^{-1}}$	$\varepsilon_{ m Bkg.}$	$\mathbf{B} _{300 \mathrm{fb}^{-1}}$	$\mathrm{sig} _{\mathrm{300 fb}^{-1}}$	$\mathrm{sig} _{\mathrm{3000 fb}^{-1}}$
	[GeV]						
\mathbf{A}	(255, 504)	0.025	14.12	8.50×10^{-4}	19.16	2.92	9.23
\mathbf{B}	(263, 455)	0.019	17.03	3.60×10^{-5}	8.11	4.78	15.11
\mathbf{C}	(287, 502)	0.030	20.71	9.13×10^{-5}	20.60	4.01	12.68
\mathbf{D}	(290, 454)	0.044	37.32	1.96×10^{-4}	44.19	5.02	15.86
\mathbf{E}	(320,503)	0.051	32.54	2.73×10^{-4}	61.55	3.76	11.88
\mathbf{F}	(264, 504)	0.028	18.18	9.13×10^{-5}	20.60	3.56	11.27
\mathbf{G}	(280, 455)	0.044	38.70	1.96×10^{-4}	44.19	5.18	16.39
\mathbf{H}	(300, 475)	0.054	41.27	2.95×10^{-4}	66.46	4.64	14.68
Ι	(310, 500)	0.063	41.42	3.97×10^{-4}	89.59	4.09	12.94
J	(280, 500)	0.029	20.67	9.14×10^{-5}	20.60	4.00	12.65

Performing the analysis for different points in the $M_2 - M_3$ (on-shell, on-shell) region

Closing Remarks


- Triple Higgs production $h_1h_1h_1$ as in the SM cannot be probed at the LHC due to its tiny cross section.
- The improved luminosity and center of mass energy of a 100 TeV collider can make the identification of the SM $h_1h_1h_1$ possible.
- The 6-b jets final state is a good candidate to search for h₁h₁h₁ within and beyond the SM
- Extended scalar sectors can be probed through h₁h₁h₁ even in the HL-LHC (consider for instance the TRSM).
- Moreover h₁h₁h₁ can provide useful information on the quartic Higgs self couplings.


Acknowledgements

GTX acknowledges the funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 945422

Backup

Backup

benchmark scenario	h_{125} candidate	target signature	possible successive decays
BP1	h_3	$h_{125} ightarrow h_1 h_2$	$h_2 \rightarrow h_1 h_1$ if $M_2 > 2M_1$
BP2	h_2	$h_3 \rightarrow h_1 h_{125}$	-
BP3	h_1	$h_3 \rightarrow h_{125} h_2$	$h_2 \to h_{125} h_{125}$ if $M_2 > 250 { m GeV}$
BP4	h_3	$h_2 \rightarrow h_1 h_1$	-
BP5	h_2	$h_3 \rightarrow h_1 h_1$	-
BP6	h_1	$h_3 ightarrow h_2 h_2$	$h_2 \to h_{125} h_{125}$ if $M_2 > 250 \mathrm{GeV}$

Parameter	Benchmark scenario					
	BP1	BP2	BP3	BP4	BP5	BP6
$M_1 \; [{ m GeV}]$	[1, 62]	[1, 124]	125.09	[1, 62]	[1, 124]	125.09
$M_2 \; [\text{GeV}]$	[1, 124]	125.09	[126, 500]	[1, 124]	125.09	[126, 500]
$M_3 \; [\text{GeV}]$	125.09	[126, 500]	[255, 650]	125.09	[126, 500]	[255, 1000]
$ heta_{hs}$	1.435	1.352	-0.129	-1.284	-1.498	0.207
$ heta_{hx}$	-0.908	1.175	0.226	1.309	0.251	0.146
$ heta_{sx}$	-1.456	-0.407	-0.899	-1.519	0.271	0.782
$v_s \; [\text{GeV}]$	630	120	140	990	50	220
$v_x \; [\text{GeV}]$	700	890	100	310	720	150
κ_1	0.083	0.084	0.966	0.073	0.070	0.968
κ_2	0.007	0.976	0.094	0.223	-0.966	0.04
κ_3	-0.997	-0.203	0.239	0.972	-0.250	0.246

Backup

$$sig(S,B) = \sqrt{2[(S+B)\ln(1+S/B) - S]}.$$

$$\operatorname{sig}(S,B) = \sqrt{2\left(\left[S+B\right]\ln\left[\frac{(S+B)(B+\sigma_{B}^{2})}{B^{2}+(S+B)\sigma_{B}^{2}}\right] - \frac{B^{2}}{\sigma_{B}^{2}}\ln\left[1 + \frac{\sigma_{B}^{2}S}{B(B+\sigma_{B}^{2})}\right]\right)}$$

$$\chi^{2,(4)} = \sum_{qr\in I} \left(M_{qr} - M_1 \right)^2,$$
$$\chi^{2,(6)} = \sum_{qr\in J} \left(M_{qr} - M_1 \right)^2.$$