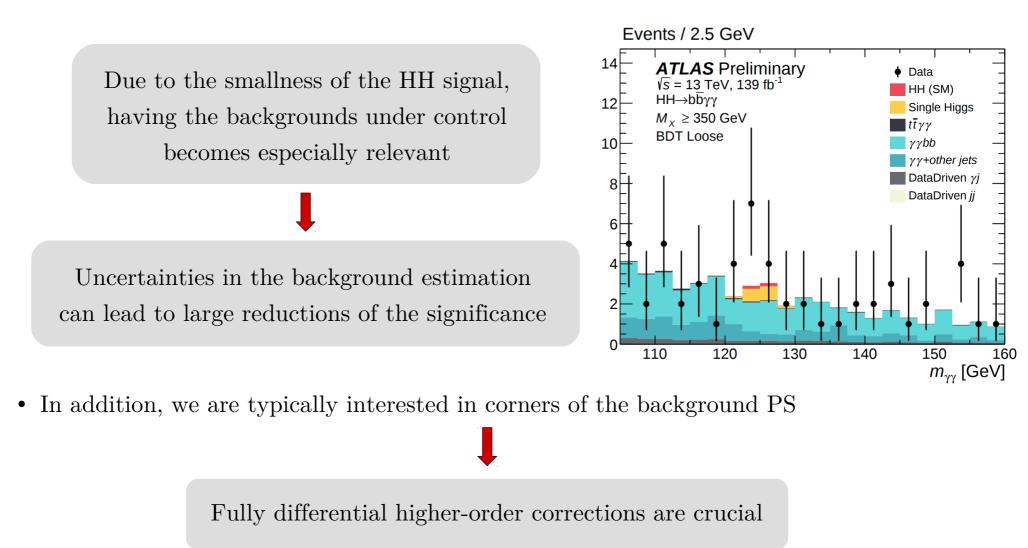
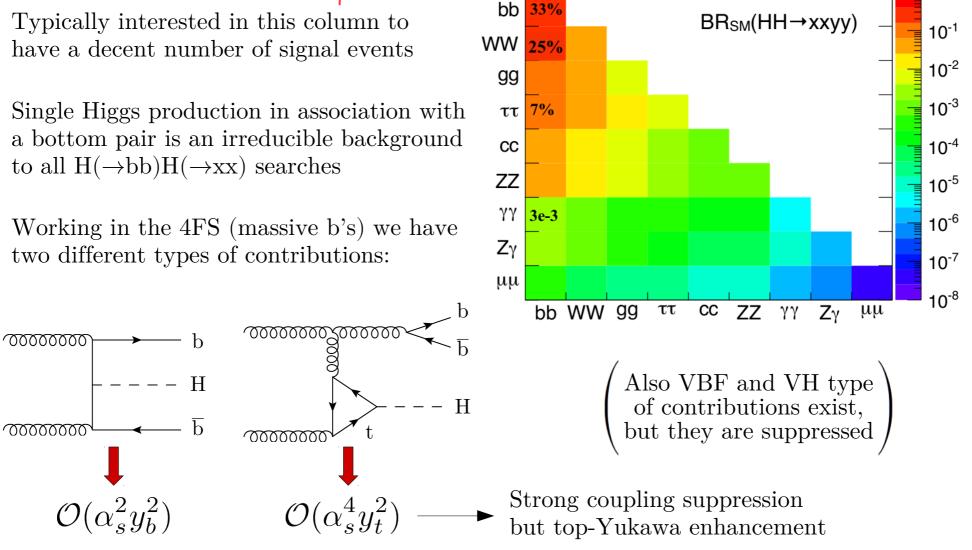
NLO+PS study of bbH background to HH production

Javier Mazzitelli


In collaboration with L. Carminati, S. Manzoni, E. Mazzeo, R. Turra, M. Wiesemann and M. Zaro

PAUL SCHERRER INSTITUT

Higgs WG General Meeting, November 28th 2022


Introduction

- Lots of recent progress on the theoretical predictions for HH production ...
- ... but we need a good description of the backgrounds as well!

The bbH background

- Typically interested in this column to have a decent number of signal events
- Single Higgs production in association with a bottom pair is an irreducible background to all $H(\rightarrow bb)H(\rightarrow xx)$ searches
- Working in the 4FS (massive b's) we have two different types of contributions:

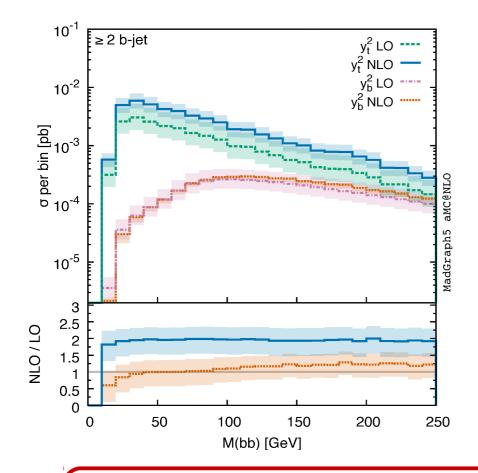
- Top-Yukawa contribution currently simulated using ggF NNLOPS
- A 'conservative' 100% uncertainty is assigned to this background

Only LO accurate in

2 jets configuration

The bbH background

• This is not a small contribution when compared to the signal!


$b\overline{b}\gamma\gamma$ search [from ATLAS-CONF-2021-016]			[Note: only MC uncertainties are quoted]		
	High mass BDT tight	High mass BDT loose	Low mass BDT tight	Low mass BDT loose	
Continuum background Single Higgs boson background	4.9 ± 1.1 0.670 ± 0.032	9.5 ± 1.5 1.57 ± 0.04	3.7 ± 1.0 0.220 ± 0.016	24.9 ± 2.5 1.39 ± 0.04	
ggF tīH	$\begin{array}{c} 0.261 \pm 0.028 \\ 0.1929 \pm 0.0045 \end{array}$	$\frac{0.44 \pm 0.04}{0.491 \pm 0.007}$	$\frac{0.063 \pm 0.014}{0.1074 \pm 0.0033}$	$\begin{array}{c} 0.274 \pm 0.030 \\ 0.742 \pm 0.009 \end{array}$	
ZH	0.142 ± 0.005	0.486 ± 0.010	0.04019 ± 0.0027	0.269 ± 0.007	
Rest	0.074 ± 0.012	0.155 ± 0.020	0.008 ± 0.006	0.109 ± 0.016	
SM HH signal ggF VBF	$\begin{array}{c} 0.8753 \pm 0.0032 \\ 0.8626 \pm 0.0032 \\ 0.01266 \pm 0.00016 \end{array}$	$\begin{array}{c} 0.3680 \pm 0.0020\\ 0.3518 \pm 0.0020\\ 0.01618 \pm 0.00018 \end{array}$	$(49.4 \pm 0.7) \cdot 10^{-3}$ $(46.1 \pm 0.7) \cdot 10^{-3}$ $(3.22 \pm 0.08) \cdot 10^{-3}$	$(78.7 \pm 0.9) \cdot 10^{-3}$ (71.8 \pm 0.9) \cdot 10^{-3} (6.923 \pm 0.011) \cdot 10^{-3}	
Alternative $HH(\kappa_{\lambda} = 10)$ signal	6.36 ± 0.05	3.691 ± 0.038	4.65 ± 0.04	8.64 ± 0.06	
Data	2	17	5	14	

- A better description will be necessary for future experimental measurements
- This motivates the use of NLO predictions for the $b\overline{b}H$ background

Note on conventions: when I talk about bbH background, I mean both y_b and y_t contributions. In the experiment these backgrounds are usually dubbed bbH and ggF, respectively. Also note that I talk about NLO predictions, since the LO is already bbH. Not to be confused with the 'NNLO' results used to estimate the bbH(y_t) background, for which the LO is inclusive H

bbH at **NLO**

- NLO corrections to bbH have been computed within MadGraph5_aMC@NLO [Deutschmann, Maltoni, Wiesemann, Zaro, 1808.01660]
- Both bottom and top Yukawa contributions, and their interference, have been included
- Top Yukawa contributions computed in the heavy top limit (HTL)

- Top Yukawa contribution dominant, while y_t - y_b interference subleading
- Large K-factors (~2-3), with strong dependence on the fiducial cuts
- Still sizeable scale uncertainties, especially for the y_t contribution
- From a LO comparison, the HTL seems to be a reliable approximation

No specific analysis targeting the HH signal region No study on the matching to parton showers

 \rightarrow Topic of this talk

[Carminati, Manzoni, Mazzeo, JM, Turra, Wiesemann, Zaro, in preparation]

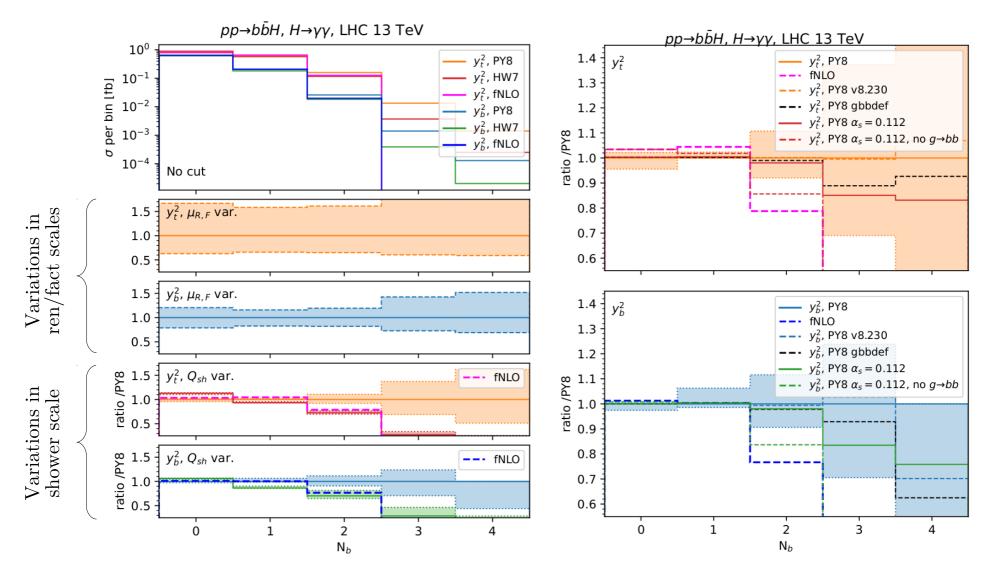
Setup

• We follow the approach of 1808.01660 $\begin{cases} b\overline{b}H \text{ at NLO in QCD} \\ Massive bottoms (4FS) \\ HTL \text{ for } y_t \text{ contributions} \end{cases}$

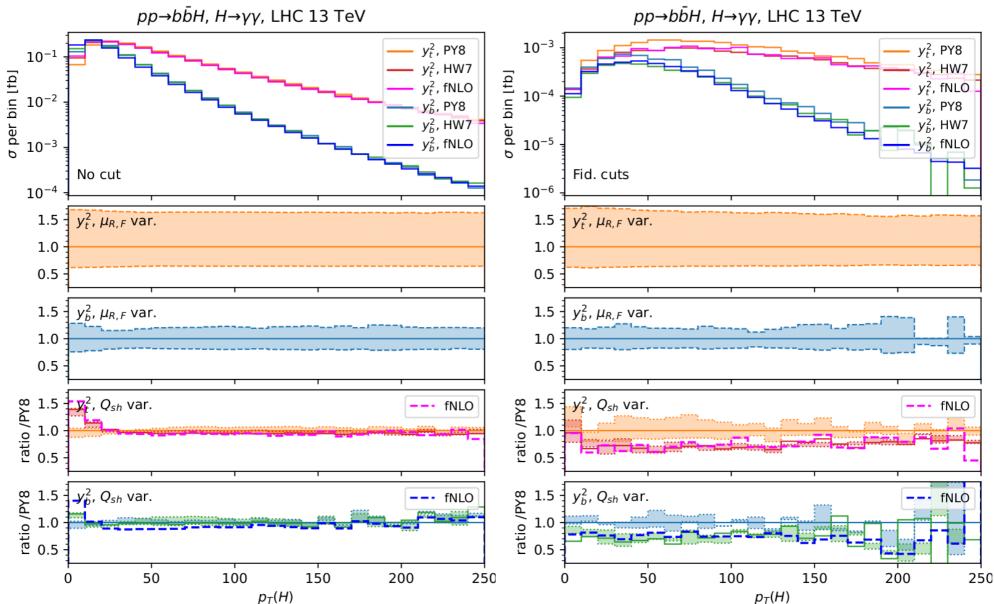
- We set m_b =4.92GeV, m_t =172.5GeV, m_H =125GeV, use NNPDF31_nlo_as_0118_nf_4
- Central scale (renorm/fact/shower): $H_T/4 = 1/4 \, \sum \, m_T(i)$
- We consider Higgs decays to two photons
- For simplicity, we generate the ${y_b}^2$ and ${y_t}^2$ distributions (interference subleading)
- We consider the following set of cuts, inspired in HH \rightarrow b $\overline{b}\gamma\gamma$ analysis:

```
Anti-kT jets with R=0.4, p_T(j)>25GeV, |\eta(j)|<2.5
b-tagged if at least one B hadron among constituents
Exactly 2 b jets and 2 photons required
The b-jets must satisfy: 80GeV<m(b<sub>1</sub>,b<sub>2</sub>)<140GeV
The photons must satisfy: 105GeV<m(\gamma_1, \gamma_2)<160GeV, |\eta(\gamma_i)|<2.37
p_T(\gamma_1)/m(\gamma_1, \gamma_2)>0.35, p_T(\gamma_2)/m(\gamma_1, \gamma_2)>0.25
```

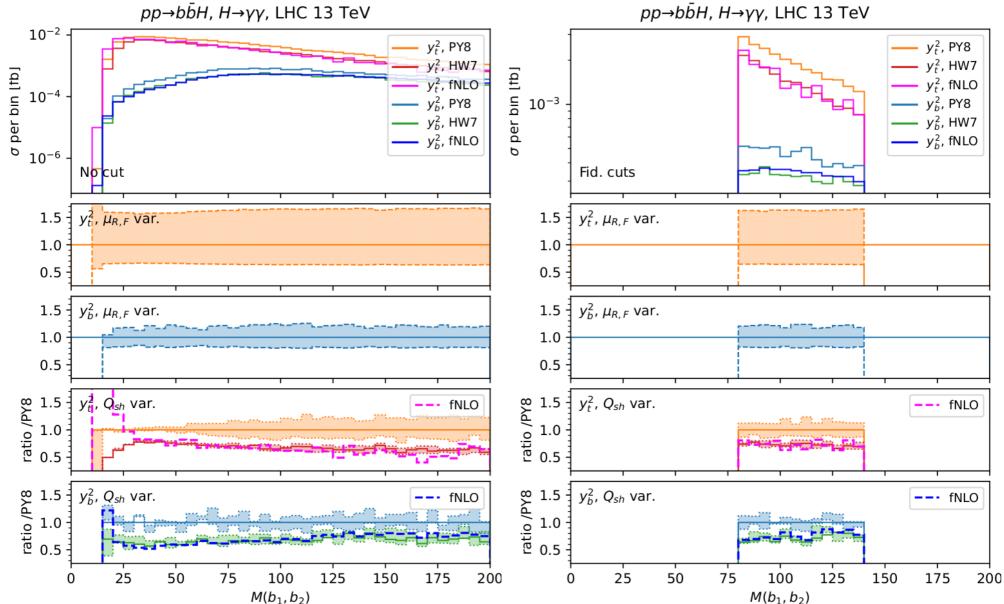
We consider $m_{2b2\gamma}^* = m_{2b2\gamma} - m(b_1, b_2) - m(\gamma_1, \gamma_2) + 2 m_H$ and the three possibilities: $m_{2b2\gamma}^* < 350 \text{GeV}, m_{2b2\gamma}^* < 500 \text{GeV}$ and $\text{no-}m_{2b2\gamma}^*$ cut

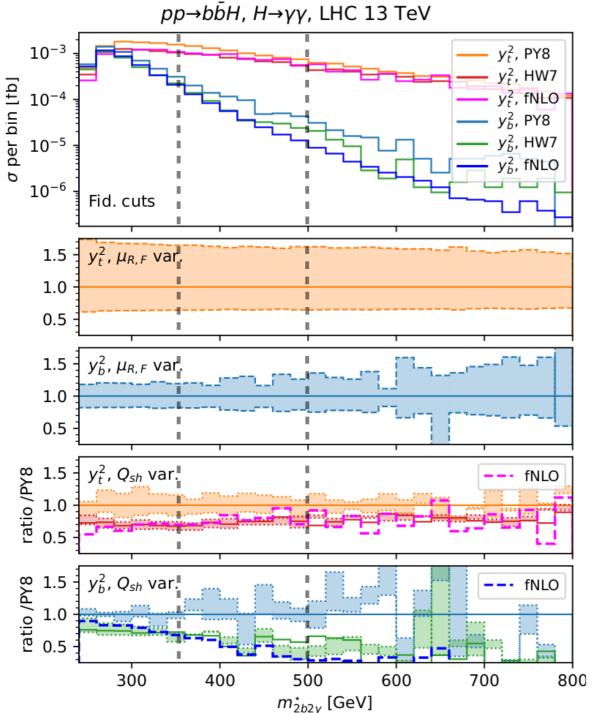

Fiducial cuts

Total cross	sections
--------------------	----------


Cut	Contr.	Run	σ [fb]	$\delta \mu_{r,f}$	$\begin{array}{c} \text{Signal [fb]} \\ \text{gg} \rightarrow \text{HH} \rightarrow \text{b} \overline{\text{b}} \gamma \gamma \end{array}$
No cut	y_b^2	PY8	$8.49 \ 10^{-1}$	+18% -20%	8.21 10-2
		HW7	$8.50 \ 10^{-1}$		
	y_t^2	PY8 HW7	$\begin{array}{c} 1.57 10^{0} \\ 1.57 10^{0} \end{array}$	$^{+61\%}_{-35\%}$	
	2	PY8	$\frac{1.37 \ 10}{5.42 \ 10^{-3}}$		
Fid. cuts	y_b^2	HW7	$3.84 \ 10^{-3}$	$^{+20\%}_{-18\%}$	2.40 10-2
	y_t^2	PY8	$2.29 \ 10^{-2}$	$+62\% \\ -35\%$	
		HW7	$1.67 \ 10^{-2}$		
Fid. cuts $+ m^{\star}_{2b2\gamma} < 500 \mathrm{GeV}$	y_b^2	PY8	$5.26 \ 10^{-3}$	$^{+20\%}_{-17\%}$	$1.67 10^{-2}$
		HW7	$3.77 \ 10^{-3}$		
	y_t^2	PY8	$1.62 \ 10^{-2}$	$^{+65\%}_{-36\%}$	
Fid. cuts + $m^{\star}_{2b2\gamma} < 350 \mathrm{GeV}$	y_b^2	HW7 PY8	$\frac{1.15 \ 10^{-2}}{4.44 \ 10^{-3}}$		
		HW7	$3.26 \ 10^{-3}$	$^{+19\%}_{-17\%}$	
	u_t^2	PY8	$8.06 \ 10^{-3}$	$+67\% \\ -36\%$	$0.30 10^{-2}$
		HW7	$5.64 \ 10^{-3}$		

Currently working on ggF at NNLOPS sample, to compare our y_t results to what is currently used in analysis


- Di-Higgs signal and $b\overline{b}H$ background are of similar size
- Relative y_t/y_b contributions change with cuts, but top-Yukawa piece always dominant
- Still sizeable scale uncertainties, especially for the \mathbf{y}_{t} piece
- Large differences in fiducial cross sections between PY8 and HW7


- Sizeable differences in shape between HW7 and PY8, HW7 closer to fixed order for $N_b=2$
- Difference originated from contributions with $g \rightarrow b\overline{b}$ splittings generated by the shower
- Further studies underway

- Good agreement between PY8 and HW7 in inclusive case, only differences at low $p_T(H)$
- Discrepancies when applying the fiducial cuts, mostly on normalization

- Top-Yukawa piece prefers lower $M(b_1, b_2)$, since it is dominated by $g \rightarrow b\overline{b}$ splitting
- It also presents a larger relative variation in the $M(b_1, b_2)$ window relevant for HH

- Top and bottom Yukawa contributions prefer different values of $m^*_{2b2\gamma}$
- The y_t piece prefers larger invariant masses, associated with configuration with hard gluon recoiling against H
- Shape difference explains different relative y_t/y_b contributions when invariant mass cut is applied
- Difference between PY8 and HW7 again connected to secondary $g \rightarrow b\overline{b}$

Summary and Outlook

- A good theoretical description of the backgrounds to HH is crucial to extract the signal
- $b\overline{b}H$ production is an irreducible background to searches with at least one $H{\rightarrow}b\overline{b}$
- Current simulation of y_t contribution (ggF) only LO, O(100%) uncertainty
- An NLO study, including both $y_{\rm t}$ and $y_{\rm b}$ contributions, is underway
- Presented results for $b\overline{b}\gamma\gamma$ final state, in fiducial region typically used in HH searches
- $b\overline{b}H$ of same order of magnitude as HH signal
- Still sizeable uncertainties, especially for y_t piece (about +60%-35%)
- Sizeable differences between PY8 and HW7 in fiducial region
- Further studies underway, stay tuned!

Thanks!