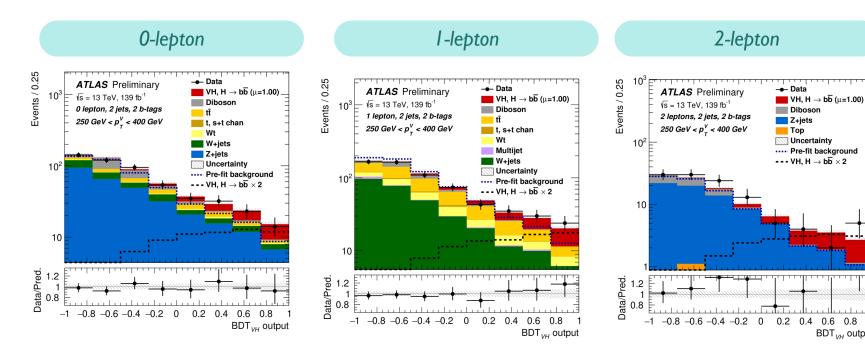

V+jets background modelling in ATLAS

BERKELEY LAB

Maria Mironova (LBNL) The 19th Workshop of the LHC Higgs Working Group 28/11/2022

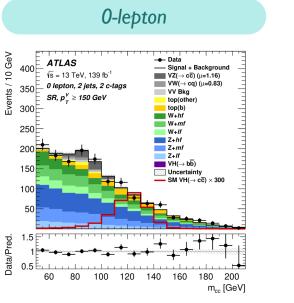

Introduction

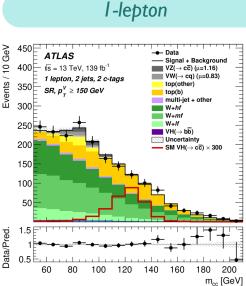
- Overview of the V+jets samples and modelling approaches commonly used by ATLAS analyses
- V+jets is an important background in many ATLAS analysis and good modelling is crucial
- For example: in the $VH(\rightarrow bb)$ and $VH(\rightarrow cc)$ analyses
- Brief reminder of VH(→bb) and VH(→cc) strategy:
 - Targeting $H \rightarrow bb$ and $H \rightarrow cc$ decays in the VH production mode
 - Categorisation into channels based on vector boson decay (Z \rightarrow vv, W \rightarrow Iv, Z \rightarrow II)
 - Identification of b- and c-jets with the use of jet flavour tagging
 - Categorisation of events by p_{T} of of vector boson and jet multiplicity
 - Fit to di-jet invariant mass (in VH(cc)), or BDT distribution (in VH(bb)) to extract signal strengths or cross-sections in the STXS scheme

V+jets in VH(→bb)

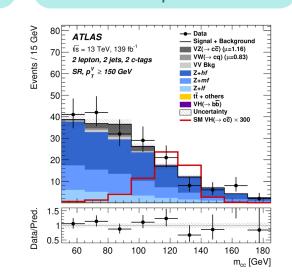
- W+jets and Z+jets backgrounds are a major background in the VH(bb) analysis, mainly W/Z+bb
- \rightarrow contribution larger than 50% for most analysis regions
- V+jets modelling uncertainties have a sizeable contribution to the total uncertainty
- \rightarrow especially W+jets is important for the WH measurement, and both W and Z+jets are important in the low p_T^{V} bins of the STXS measurement

Breakdown of uncertainties for VH(bb) signal


			σ_{μ}	
Source of uncertainty		VH	WH	ZH
Total		0.177	0.260	0.24
Statistical		0.115	0.182	0.17
Systematic		0.134	0.186	0.16
Statistical un	certainties			
Data statistic	al	0.108	0.171	0.15
$t\bar{t} \ e\mu$ control	region	0.014	0.003	0.02
Floating nor	malisations	0.034	0.061	0.04
Experimenta	l uncertainties			
Jets		0.043	0.050	0.05
$E_{\rm T}^{\rm miss}$		0.015	0.045	0.01
Leptons		0.004	0.015	0.00
-	<i>b</i> -jets	0.045	0.025	0.06
b-tagging	c-jets	0.035	0.068	0.01
	light-flavour jets	0.009	0.004	0.01
Pile-up		0.003	0.002	0.00
Luminosity		0.016	0.016	0.01
Theoretical and modelling uncertainties				
Signal		0.072	0.060	0.10
Z + jets		0.032	0.013	0.05
W + jets		0.040	0.079	0.00
tī		0.021	0.046	0.02
Single top quark		0.019	0.048	0.01
Diboson		0.033	0.033	0.03
Multi-jet		0.005	0.017	0.00


28/11/2022

BDT_{VH} output

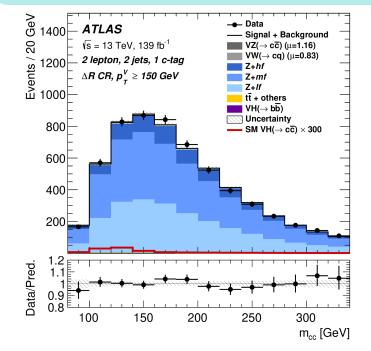

V+jets in VH(→cc)

- Similar to VH(bb), V+jets also a major background in VH(cc), with a more diverse flavour composition → mainly enriched in W/Z+cc and W/Z+cl
- Z+jets modelling uncertainties are the leading systematic uncertainty, and W+jets uncertainties are also sizeable
- Additionally, due to low c-tagging efficiency, simulation statistics have a large impact and are mitigated through truth-tagging (details in <u>backup</u>)
- ightarrow As the main background, small statistical uncertainties in simulation are important for V+jets

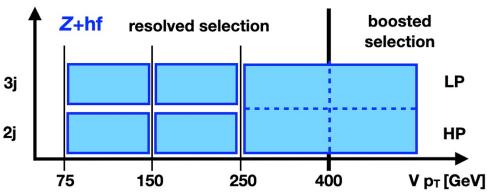
2-lepton

Breakdown of uncertainties for VH(cc) signal

	$\mu_{VH(c\bar{c})}$
	15.3
	10.0
	11.5
	7.8
	5.1
uncertainties	
	2.1
	7.0
	3.9
	3.0
	1.0
	0.8
	1.0
	4.2
i	
	2.8
	0.5
	0.2
	0.3
<i>c</i> -jets	1.6
<i>b</i> -jets	1.1
light-jets	0.4
au-jets	0.3
ΔR correction	3.3
Residual non-closure	1.7
	c-jets b-jets light-jets τ -jets ΔR correction

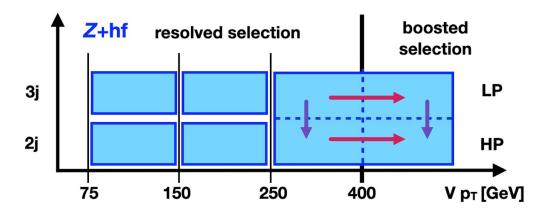

V+jets modelling approach

- Start from nominal simulated samples
 - Nominally simulated with Sherpa 2.2.1 5F MEPS@NLO (NLOaccurate ME for up to 2 jets, LO-accurate ME for up to four jets)
 - Samples produced in slices of max(H_T , p_T^V) to control phase space sampling
 - Filters are applied to select events with heavy flavour jets
 - More details on generator setup <u>here</u>
- Constrain normalisations (and m_{cc} shapes) of V+jets in dedicated control regions, e.g. through selecting events with high ΔR between jets
- Float normalisations based on di-jet flavour:


Maria Mironova

- VH(bb): Float V+hf (bb,bc,bl,cc) separately and take remaining components as predicted by simulation + uncertainty
- VH(cc): Float separately V+hf (bb,cc), V+mf (bc,bl,cl) and V+l
- ightarrow In both cases, with uncertainties applied on flavour composition
- Determine floating normalisations with as much granularity as data allows (in different bins of jet multiplicity, p_T of vector boson)

Example of V+jets control region in VH(cc)

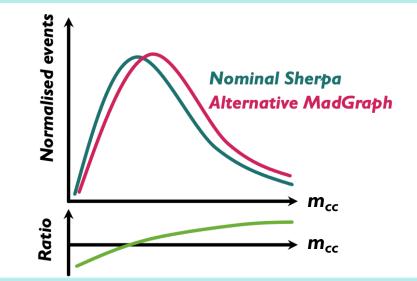


V+jets modelling approach

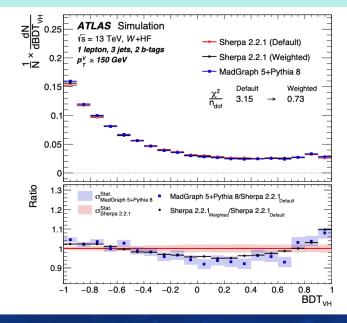
- Derive uncertainties by considering different variations
 - MadGraph+Pythia8 5F MEPS@LO (up to 4 partons) → dominant uncertainty
 - Renormalisation/factorisation scale (μ_R , μ_F) variations
 - CKKW and matching scale variation in Sherpa 2.2.1 sample → studied in VH(bb), small effect with limited statistics
- Calculate shape and normalisation effects of each alternative generator
- Group normalisation effects together, to calculate:
 - **Overall normalisation** uncertainties on smaller V+jets components
 - Extrapolation uncertainties between different analysis regions and on the flavour composition of backgrounds

Example of floating normalisation scheme in VH(bb) $\rightarrow p_T^V$ and jet multiplicity acceptance uncertainties are highlighted

Extrapolation uncertainties calculated from yields n_1 and n_2 from regions 1 and 2 (e.g. SR and CR):

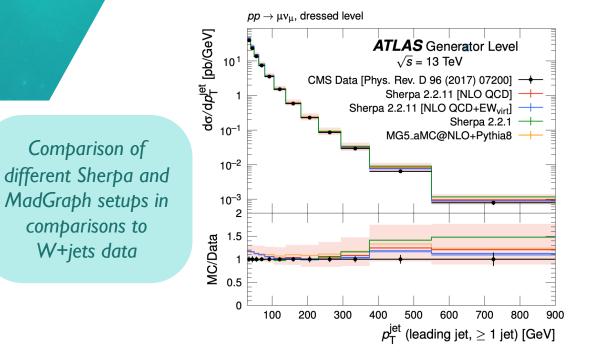

Acc. ratio =
$$\sqrt{\sum_{i}^{l} \left(\frac{\left(\frac{n_{1}}{n_{2}}\right)_{i}}{\left(\frac{n_{1}}{n_{2}}\right)_{nominal}} - 1\right)^{2}}$$

Different sources added in quadrature


V+jets modelling approach

- Shape uncertainties: Consider also variations on the shapes of kinematic distributions based on the alternative samples, and include shape uncertainties in the analysis
- Different approaches possible, depending on fit discriminant and available statistics:
 - VH(cc): Fit uses Higgs candidate invariant mass as variable, so directly parametrise the ratio of nominal and alternative generators
 - W+jets in VH(bb): Use BDT_R technique → parametrise shape effect on multiple kinematic variables using BDT
 - Z+jets in VH(bb): Instead of using MadGraph as alternative samples, use data-driven estimation of shape systematic from sideband data

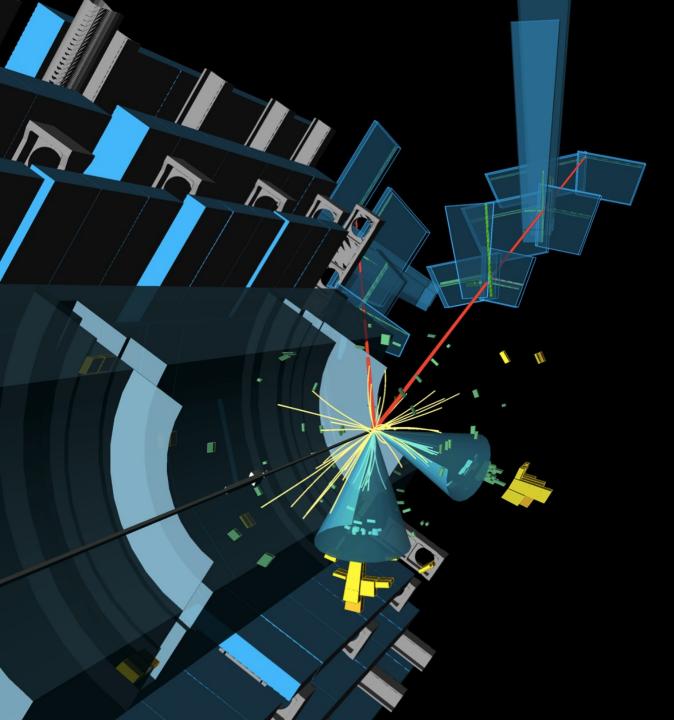
Illustration of shape systematics for mass-based fit


Illustration of shape systematics for BDT-based fit

Recent developments

Several recent developments in V+jets event generation in ATLAS (details <u>here</u>)

- Sherpa 2.2.11 setup with several improvements:
 - Corrected heavy flavour hadron production fractions
 - Inclusion of higher-order QCD and EW corrections, updated EW input scheme, and additional specialised treatments
 - Additional computational improvements reduce CPU resources needed per event
- MadGraph5_aMC@NLO+Pythia8 w/ up to 3 additional partons at NLO, using FxFx ME and PS merging prescription, is also available as an alternative generator


Mean CPU time per event for Sherpa 2.2.1 and 2.2.11

Phase-space strategy	Mean [s/event]	Mean [HS06 s/event]	Fraction of events [%]			
S	SHERPA 2.2.11 configuration					
$\left(\frac{\max(H_{\rm T}, p_{\rm T}^V)}{20}\right)^2$ analytic enhancement	17.9 ± 0.2	375 ± 4	100			
SHERPA 2.2.1 configuration						
$0 < \max(H_{\rm T}, p_{\rm T}^V) < 70 {\rm GeV}$	4.7 ± 0.5	99 ± 11	31			
$70 < \max(H_{\rm T}, p_{\rm T}^{V}) < 140 {\rm GeV}$	34.6 ± 2.3	725 ± 48	27			
$140 < \max(H_{\rm T}, p_{\rm T}^{V}) < 280 {\rm GeV}$	36.8 ± 1.2	772 ± 25	19			
$280 < \max(H_{\rm T}, p_{\rm T}^{\tilde{V}}) < 500 {\rm GeV}$	53.7 ± 2.2	1126 ± 46	11			
$500 < \max(H_{\rm T}, p_{\rm T}^{V}) < 1000 {\rm GeV}$	67.6 ± 3.0	1418 ± 63	9			
$\max(H_{\rm T}, p_{\rm T}^{\bar{V}}) > 1000 {\rm GeV}$	108.4 ± 5.7	2273 ± 120	3			

28/11/2022

Summary

- Accurate prediction of V+jets background is crucial for many ATLAS analysis, e.g. $VH(\rightarrow bb)$ and $VH(\rightarrow cc)$
- \rightarrow discussed the V+jets treatment in these analyses in detail
- Nominal V+jets samples are generated using Sherpa 2.2.1 5F MEPS@NLO
- Normalisation of main V+jets background components derived in control regions from data
- Modelling uncertainties assessed as two-point systematics using different alternative generators, e.g.
 MadGraph+Pythia8 5F MEPS@LO (dominant uncertainty), renormalisation/factorisation scale etc
- Normalisation and acceptance effects are considered separately from shape uncertainties and derived between analysis categories and flavour composition
- Shape uncertainties are derived for each source of uncertainty using different techniques (generator comparison in fitted distribution, BDTr, data-driven)
- V+jets simulated statistics can have a sizeable impact on analyses
- Recent work in ATLAS provides new options for V+jets generation: Sherpa 2.2.11 and MadGraph5_aMC@NLO+Pythia8 with theoretically motivated and computational improvements

Thank you! Any questions?

Run: 303892 Event: 4866214607 2016-07-16 06:20:19 CEST

MC samples

- V+jets: (Details)
 - Nominally simulated with Sherpa 2.2.1
 - NLO-accurate matrix elements for up to 2 jets, LO-accurate ME for up to four jets in five-flavour scheme are calculated with Comix
 - b- and c-quarks are treated as massless
 - QCD corrections for ME @ NLO by OpenLoops
 - NNPDF3.0NNLO PDF
 - Max(H_T, p_T^V) slides with boundaries [0, 70, 140, 280, 500, 1000, 6500] GeV
 - Alternative samples simulated with MadGraph5_aMC@NLO 2.6.5
 - Showering and hadronisation with Pythia 8.240 with A14 tune and NNPDF2.3LO PDF set
 - Full 5-flavour scheme with massless quarks in ME calculation

Summary of Sherpa configurations

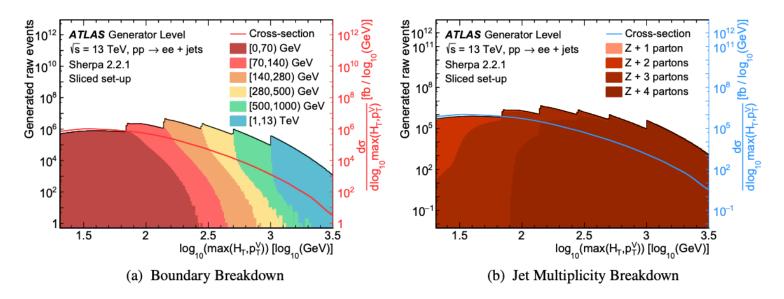

https://arxiv.org/pdf/2112.09588.pdf

Table 1: Summary of the SHERPA 2.2.1 and 2.2.11 configurations.

Configuration	Sherpa 2.2.1	Sherpa 2.2.11
Generator version	Sherpa 2.2.1	Sherpa 2.2.11
PDF set	NNPDF3.0nnlo	NNPDF3.0nnlo
EW input scheme	Effective	$\sin^2 \theta_{\rm eff}$
QCD accuracy	0–2j@NLO+3,4j@LO	0–2j@NLO+3,4,5j@LO
NLO EW _{virt} corrections	No	Yes
Subtraction scheme	Default	Modified Catani–Seymour
Special treatment for unordered histories	No	Yes
Scale for III-events	STRICT_METS	$H'_{ m T}$
Gluon colour/spin exact matching	Yes	No
Core process for K-factor	$2 \rightarrow 4$	$2 \rightarrow 2$
Phase-space strategy	Sliced in max $(H_{\rm T}, p_{\rm T}^V)$	Analytic enhancement

Phase space sampling

https://arxiv.org/pdf/2112.09588.pdf

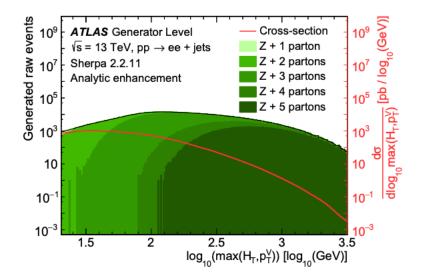


Figure 10: Distribution of unweighted $pp \rightarrow e^+e^-$ + jets MC sampled events and differential cross-section for the sliced enhancement as a function of the slicing observable, $\log_{10}(\max(H_T, p_T^V))$. Events are sliced according to the $\max(H_T, p_T^V)$ variable. The unweighted distribution is split either (a) according to the phase-space sampling slices, or (b) according to the final-state jet multiplicity. In (b) the Z+1 parton contribution is small and only visible in the top left of the distribution.

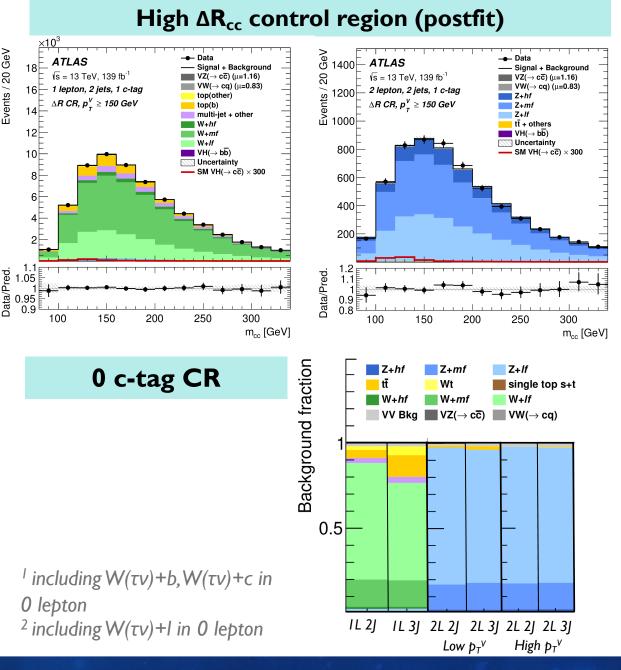
MC samples

Process	ME generator	ME PDF	PS and hadronisation	Tune	Cross-section order
$\begin{array}{c} qq \rightarrow VH \\ (H \rightarrow c\bar{c}/b\bar{b}) \end{array}$	Powheg-Box v2 + GoSam + MiNLO	NNPDF3.0NLO	Рутніа 8.212	AZNLO	NNLO(QCD) +NLO(EW)
$gg \to ZH \\ (H \to c\bar{c}/b\bar{b})$	Powheg-Box v2	NNPDF3.0NLO	Рутніа 8.212	AZNLO	NLO+NLL
tī	Powheg-Box v2	NNPDF3.0NLO	Рутніа 8.230	A14	NNLO +NNLL
<i>t/s</i> -channel single top	Powheg-Box v2	NNPDF3.0NLO	Рутніа 8.230	A14	NLO
<i>Wt</i> -channel single top	Powheg-Box v2	NNPDF3.0NLO	Рутніа 8.230	A14	Approx. NNLO
V+jets	Sherpa 2.2.1	NNPDF3.0NNLO	Sherpa 2.2.1	Default	NNLO
$q q \rightarrow V V$	Sherpa 2.2.1	NNPDF3.0NNLO	Sherpa 2.2.1	Default	NLO
$gg \rightarrow VV$	Sherpa 2.2.2	NNPDF3.0NNLO	Sherpa 2.2.2	Default	NLO

Event selection / modelling uncertainities

		$VH(\rightarrow b\bar{b})$	
	Common Selections	$WH(\rightarrow b\bar{b})$ normalisation $ZH(\rightarrow b\bar{b})$ normalisation	27% 25%
Central jets Signal jet p _T c-jets b-jets	Signal jet p_T ≥ 1 signal jet with $p_T > 45$ GeV c -jets1 or 2 c -tagged signal jets		10/5/12% 4% 7 - 11%
Jets $p_{\rm T}^V$ regions	2, 3 (0- and 1-lepton), 2, ≥ 3 (2-lepton) 75–150 GeV (2-lepton) > 150 GeV	Z+jets Z+hf normalisation Z+mf normalisation Z+lf normalisation Z+bb to $Z+cc$ ratio	Floating Floating Floating
ΔR (jet 1, jet 2)	$75 < p_{\rm T}^V < 150 \text{ GeV}: \Delta R \le 2.3$		$20\% \\ 18\% \\ 6\% \\ 1 - 8\% \\ 10 - 37\%$
	0 Lepton	High ΔR CR to SR 0- to 2-lepton ratio	12 - 37% 4 - 5%
Trigger Leptons $E_{\rm T}^{\rm miss}$ $p_{\rm T}^{\rm miss}$ $H_{\rm T}$ min $ \Delta\phi(E_{\rm T}^{\rm miss}, \text{jet}) $ $ \Delta\phi(E_{\rm T}^{\rm miss}, H) $ $ \Delta\phi(\text{jet1}, \text{jet2}) $ $ \Delta\phi(E_{\rm T}^{\rm miss}, p_{\rm T}^{\rm miss}) $	$E_{\rm T}^{\rm miss}$ 0 <i>loose</i> leptons > 150 GeV > 30 GeV > 120 GeV (2 jets), > 150 GeV (3 jets) > 20° (2 jets), > 30° (3 jets) > 120° < 140° < 90°	W +jets W + hf normalisation W + nf normalisation W + lf normalisation W + lf normalisation W + lf normalisation W + bl to W + cc ratio W + bl to W + cl ratio W + bc to W + cl ratio W \rightarrow $\tau v(+c)$ to W + cl ratio W \rightarrow $\tau v(+l)$ to W + cl ratio W \rightarrow $\tau v(+l)$ to W + l ratio N_{jet} acceptanceHigh ΔR CR to SR	Floating Floating 4 - 10 % 31 - 32 % 31 - 33 % 11% 27% 8% 8 - 14% 15 - 29%
Trigger	1 Lepton <i>e</i> sub-channel: single electron	$W \rightarrow \tau \nu$ SR to high ΔR CR ratio 0- to 1-lepton ratio	5 - 18% 1 - 6%
Leptons $E_{\rm T}^{\rm miss}$ $m_{\rm T}^{W}$	 μ sub-channel: E_T^{miss} 1 <i>tight</i> lepton and no additional <i>loose</i> leptons > 30 GeV (<i>e</i> sub-channel) < 120 GeV 	Top quark (0- and 1-lepton) top(b) normalisation top(other) normalisation N_{jet} acceptance 0- to 1-lepton ratio	Floating Floating 7 – 9% 4%
	2 Lepton	SR/top CR acceptance $(t\bar{t})$ SR/top CR acceptance (Wt)	9% 16%
Trigger	single lepton	$Wt / t\bar{t}$ ratio	10%
Leptons	2 <i>loose</i> leptons Same flavour, opposite-charge for $\mu\mu$	Top quark (2-lepton) Normalisation	Floating
<i>m</i> ₁₁	$81 < m_{ll} < 101 \text{ GeV}$	Multi-jet (1-lepton) Normalisation	20-100%

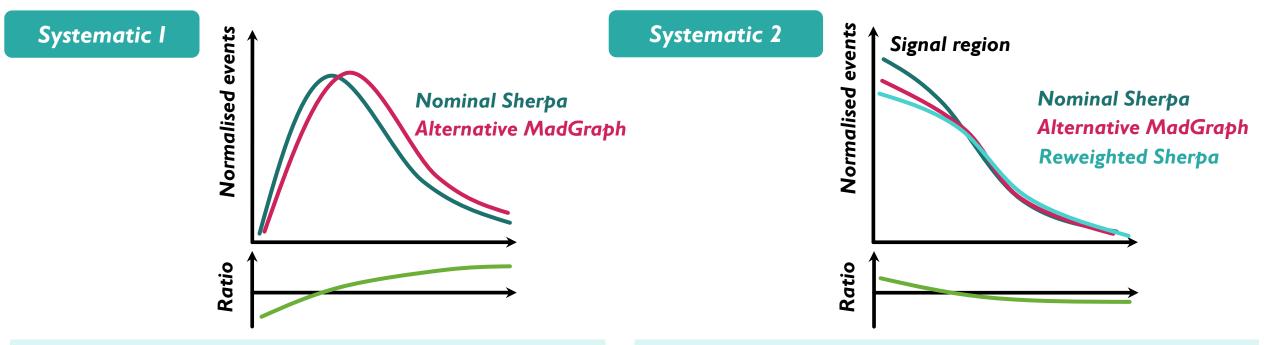
Maria Mironova


V+jets background

• V+jets (split as W and Z+jets) split into flavours:

20 GeV

Events /


- **V+hf:V+cc,** V+bb
- **V+mf:V+cl**, V+bc, V+bl
- V+lf²
- All V+jets normalisations floating in fit, separated as V+hf.V+mf and V+lf
- V+hf and V+mf floating normalisations determined with the help of a high ΔR_{cc} control region
- One ΔR_{cc} CR for each corresponding SR: ٠
 - Low pTV: $2.3 < \Delta R_{cc} < 2.5$ •
 - Medium pTV: $I.6 < \Delta R_{cc} < 2.5$
 - High pTV: $1.2 < \Delta R_{cc} < 2.5$
- Upper cut added to stay close to SR phase space ٠
- V+If floating normalisations determined in 0 c-tag CR and I and 2 lepton \rightarrow same kinematic selection as SR

28/11/2022

V+jets m_{cc} shape uncertainties

- Extrapolation from ΔR CR to SR is more complicated, as m_{cc} and ΔR_{cc} are correlated
- Two sets of shape uncertainties defined, from comparisons of Sherpa2.2.1 and MadGraph5

- Derived in the ΔR CR, applied to SR and ΔR CR, correlated shape+normalisation effect
- → Provides constraints on m_{cc} shape in SR from ΔR CR, and takes care of acceptance effect
- Reweight Sherpa MC in the SR by Syst I and calculate residual difference to MG
- Applied to SR only as shape-only
- \rightarrow Provides additional freedom on m_{cc} shape in SR

V+jets normalisations

- All V+jets normalisations floating in fit and constrained from signal and control regions
- Common normalisations for all data-taking periods, as SRs are not split by years
- Decorrelations between n_{jet} and $p_T{}^V$ regions as much as possible within the stat uncertainties
- Nominal MC generator is Sherpa 2.2.1
- 0- and I-lepton:
 - Common normalisations for all categories for W+hf and W+mf
 - Separate floating normalisations for W+lf in n_{Jet} due to 0 c-tag CR with high statistics
- 0- and 2-lepton:
 - Floating normalisations split by p_T^V categories (low p_T^V only in 2-lepton)
 - Split normalisations in n_{Jet} for Z+lf

W+jets floating normalisations

Background	рт ^v	Jets	Value
W+hf			1.16 ± 0.35
W+mf			1.28 ± 0.35
W+If		2	1.02 ± 0.04
		3	0.97 ± 0.05

Z+jets floating normalisations

Background	рт ^v	Jets	Value
Z+hf	>150 GeV		1.19 ± 0.22
	75-150 GeV		1.25 ± 0.25
Z+mf	>150 GeV		1.10 ± 0.15
	75-150 GeV		1.11 ± 0.15
	>150 GeV	2	1.07 ± 0.03
		3	1.08 ± 0.05
Z+lf	75-150 GeV	2	1.12 ± 0.04
		3	1.07 ± 0.06

Most normalisations in agreement with 1 (**highlighted** otherwise) Similar normalisations also seen in VH(bb) with smaller uncertainties

V+jets uncertainties

- Acceptance ratios between channels, flavour components and jet multiplicity categories
- Comparison of Sherpa 2.2.1 and MadGraph5 and $\mu_{\text{R}}, \mu_{\text{F}}$ scale variations
- m_{cc} shape uncertainties derived from the same sources
- Largest uncertainties from Sherpa/MadGraph comparisons, followed by μ_{R} scale variation

	Uncertainty	Prior
	Z+bb to Z+cc ratio	20 %
	Z+bl to Z+cl ratio	18 %
+jets	Z+bc to Z+cl ratio	6 %
•	p⊤ ^V acceptance	I-8 %
	n _{Jet} acceptance	10-37 %
	0-lepton/2-lepton ratio	4-5 %
	W+bb to W+cc ratio	4-10 %
	W+bl to W+cl ratio	31-32 %
/+jets	W+bc to W+cl ratio	31-33 %
,	W(τν)+c to W+cl ratio	11%
	W(τν)+b to W+cl ratio	27 %
	W(τν)+l to W+l ratio	8 %
	n _{Jet} acceptance	8-14 %
	W(τν) SR/ΔR CR ratio	5-18 %
	0-lepton/1-lepton ratio	I-6 %

Z·

W

Truth-tagging

- Due to moderate c-tagging efficiency (27%), the available MC statistics are significantly reduced in the VH(cc) analysis
- → Additional MC statistics, especially for V+jets, would mean a significant improvement
- Mitigation possible through the use of truth-tagging
- → Instead of using direct cut on flavour tagging requirements (direct tagging), weigh event based on probability of passing c-tagging
- Weights calculated from flavour tagging efficiency stored in 2D map as function of p_T and η
- Used in VH(cc) analysis to improve statistical uncertainty on simulated background events for V+jets and other backgrounds by ~ factor 3
- Also used in VH(bb) on non-b jets ("hybrid tagging")
- Closure with direct tagging not perfect \rightarrow requires additional uncertainties
- Recent promising developments in truth-tagging using GNN (link paper)

c-tagging efficiency as a function of jet p_{T}

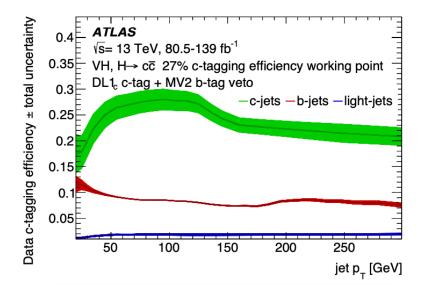
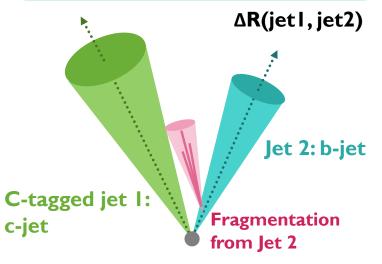
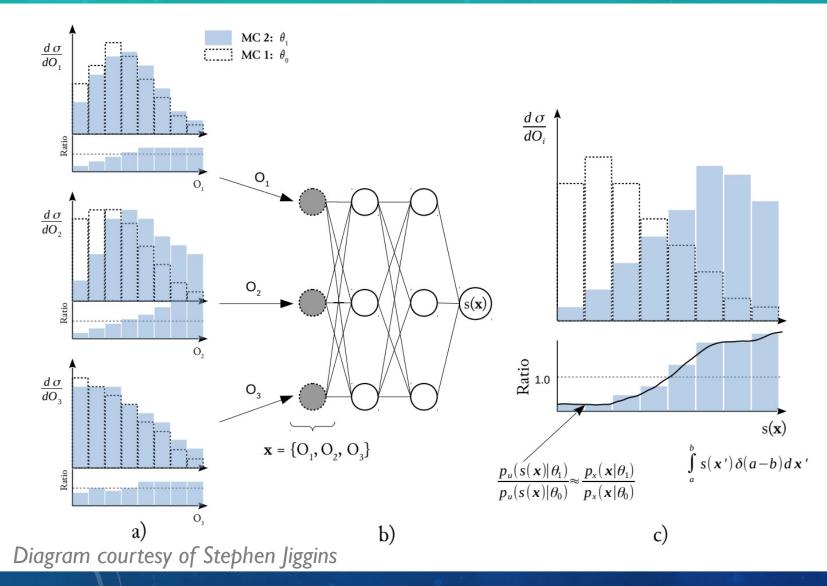
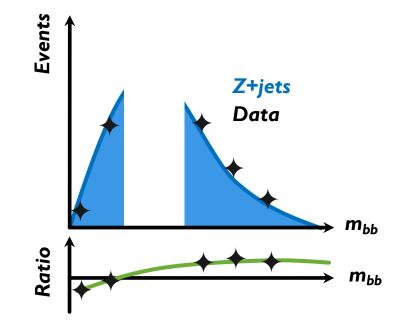




Illustration of close-by jets which can cause disagreement with direct and truth tagging

BDTr approach


BDTr approach:

- I. Train BDT classifier to separate nominal and alternative MC model
- 2. Evaluate classifier response for both MC models
- 3. Parametrise ratio of classifier response for both models
- 4. Reweight nominal MC by parametrisation and use as systematic uncertainty

For W+jets in VH(bb), factorise p_T^V as independent shape variation due its importance in the categorisation

Data-driven approach for Z+jets

- Use data-driven approach for Z+jets modelling in VH(bb), due to high purity of 2-lepton channel
- Sum SR+CR and subtract data-driven ttbar estimate from templates and data
- Parametrise the data/MC ratio for the m_{bb} and p_T^V distributions, while excluding m_{bb} [80,140] GeV (to remove VH and Diboson)
- \rightarrow Use parametrised ratio as the uncertainty

