Search for a new resonance $X \rightarrow HY \rightarrow yybb$ in proton-proton collisions at $\sqrt{s} = 13$ TeV

19th LHCHXSWG workshop 28th November 2022

Lata Panwar On behalf on the CMS collaboration

Outline

NOTE:

• Approved and public by the CMS collaboration: <u>CMS-PAS-HIG-21-011</u> (presented during ICHEP 2022)

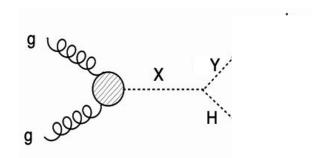
- Physics Motivation
- Analysis Strategy
- Results with theoretical
 - interpretations
- Summary

Physics Motivation

- Many BSM theories predict direct or indirect production of new resonances with enhanced cross-section ; direct coupling with SM-like or/and BSM Higgs boson
- Analysis features:
 - Model-independent approach with narrow-width approximation
 - \circ $\;$ Searches are motivated from:

Next-to-minimal supersymmetric model (**NMSSM**) and Two-real-scalar-singlet model (**TRSM** [<u>Ref.</u>])

• First time looking at NMSSM and TRSM motivated searches


Physics Motivation

Next-to-minimal supersymmetric model

- Enriches Higgs sector with 7 Higgs bosons (lets label three NMSSM Higgs boson scalars as X, Y and SM-like H)
- dominant singlet component of Y suppresses its direct production at LHC; production via a heavy Higgs boson X → YH becomes important

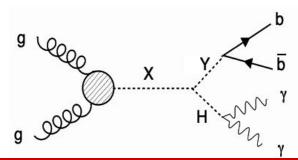
Two-real-scalar-singlet model

- Extension of SM with two scalar singlet fields
- Three scalars⇒ one is identified as SM-like Higgs boson
- Gives same topology for $X \rightarrow YH$

Physics Motivation

Next-to-minimal supersymmetric model

- Enriches Higgs sector with 7 Higgs bosons (lets label three NMSSM Higgs boson scalars as X, Y and SM-like H)
- dominant singlet component of Y suppresses its direct production at LHC; production via a heavy Higgs boson X → YH becomes important


yybb final state

- H→γγ handle with high purity and selection efficiency due to excellent ECAL response
- For Y→ bb handle b tagging rejects high multijet background contamination

Two-real-scalar-singlet model

- Extension of SM with two scalar singlet fields
- Three scalars⇒ one is identified as SM-like Higgs boson
- Gives same topology for $X \rightarrow YH$

X mass upto 1 TeV Y mass upto 800 GeV m_y < m_x - m_H

Analysis Strategy

Event selections

Background rejection methods

Statistical Analysis

Lata Panwar

Event Selections

Trigger Selection (Standard H→ yy triggers)

Photon selections

(Same as H→ yy analysis)

- photon MVA ID > -0.9 (99% eff.)
- Electron veto (suppress $Z \rightarrow ee$)
- $p_T(y1)/M(yy) > 1/3$
- $p_T(y2)/M(yy) > 1/4$
- 100 < M(yy) < 180 GeV

Jets selection

(similar to non-resonant HH→yybb JHEP 03 (2021))

- $p_T(jets) > 25 \text{ GeV}, |\eta(jets)| < 2.4(2.5) (2016(2017/18))$
- Jet corrected with b jet energy regression (<u>Ref.</u>)
- Jet Id selection with efficiency > 99%
- $\Delta R(jet, \gamma's) > 0.4$
- 70 < M(jj) < 1200 GeV
- Jet pair with highest sum of DeepJet score

Background rejection

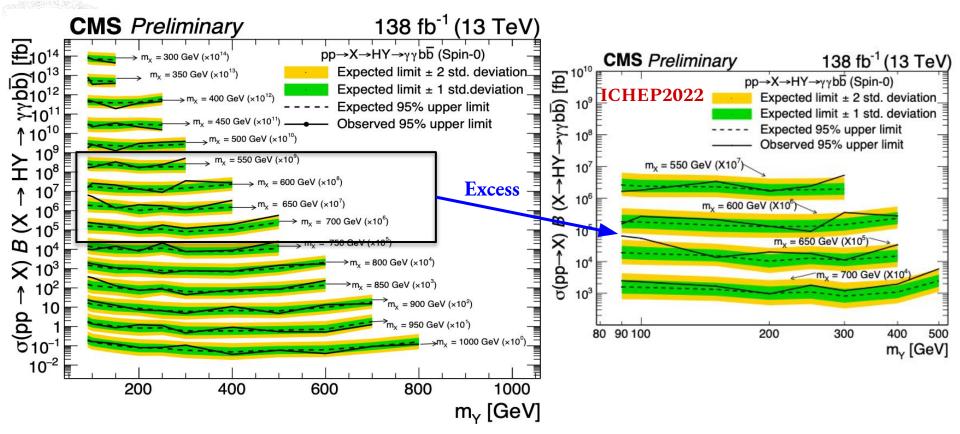
Non-resonant background

- Includes SM multijet backgrounds with up to two prompt photon contribution
- BDT training is used to reject the dominant yy+jets and y+jets backgrounds
- Events are classified into three BDT categories after discarding the background pure region

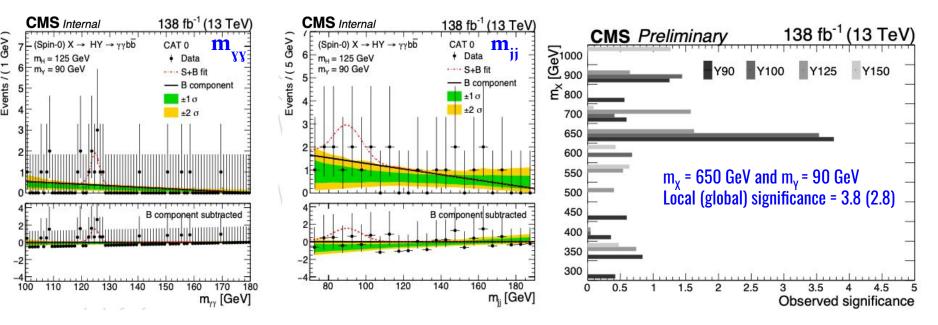
Resonant background

- Includes SM single H processes where $H \rightarrow \gamma\gamma$ (giving the signal-like $m_{\gamma\gamma}$ shape)
- NN-based discriminant is used to reject dominating ttH background
- Along with Event classification, a tight selection on \tilde{M}_{X} (= m_{yyjj} m_{yy} m_{jj} + m_{H} + m_{y}) variable is applied which make resonant contribution < 1%

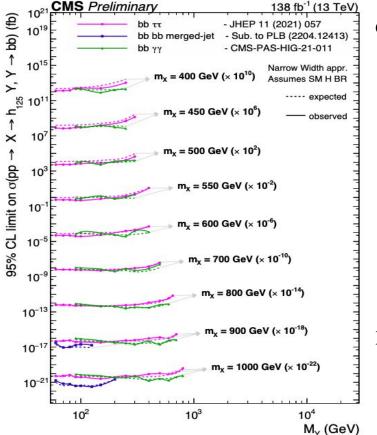
Signal and Background Model


- Signal is extracted by 2D fit in uncorrelated m_{vv}:m_{ii} plane
- Signal
 - m_{vv} : sum of gaussian functions is used (upto 5)
 - **m**_{ii}: DoubleCrystalBall (DCB) function or Sum of CB and Gaussian
- Non-resonant background:
 - Determine from data-driven method
 - 2D <u>envelope method</u> (1Dx1D)
- Resonant background:
 - **m**_{vv}: Same as signal modeling
 - \mathbf{m}_{ii} : differs depending upon the process

Results


- We find no deviation from SM background predictions except $m_X = 650$ GeV and $m_Y <= 100$ GeV
- 95% upper limits are set on product of cross section and branching fraction to yybb final state
- Results are also interpreted for NMSSM and TRSM scenario

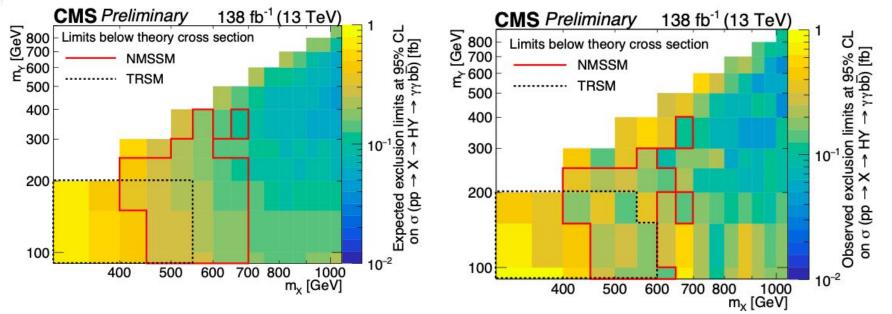
Results: $X \rightarrow HY$


S + B fit and significance

Distribution of the observables for the highest excess

<u>TWiki</u>

More about "Excess"


Other reported excess by CMS:

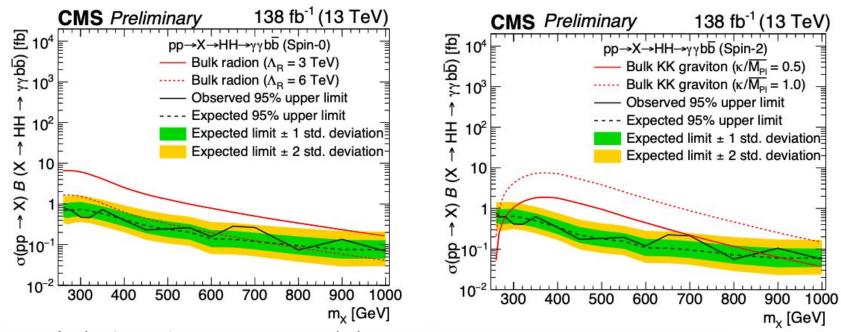
- Resonant <u>WW searches</u> (in fully leptonic final state) by CMS
 - Local (global) significance resonance mass 650 GeV
 = 3.8 (2.6)
- Additional <u>BSM Higgs searches</u> in ττ final states by CMS
 - Local (global) significance BSM Higgs mass 95 GeV
 = 2.6 (2.3)
- <u>Low mass SM-like Higgs searches</u> with yy final state around 95 GeV by CMS
 - Local (global) significance 2.8 (1.3)
 - Full Run-2 results are ongoing

For X→YH, CMS compares ττbb, bbbb and yybb:

- The excess reported in this analysis at $m_X = 650$ GeV, was only checked for $\gamma\gamma$ bb
- Other channels still need to study this region

Theoretical interpretations

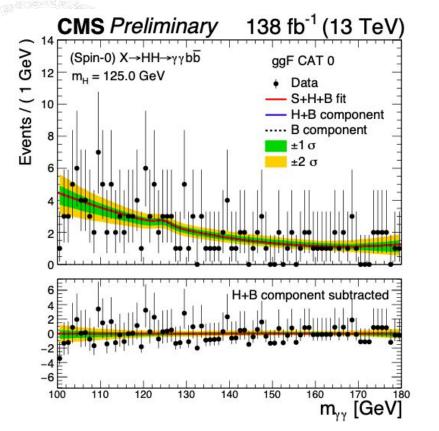
- We make NMSSM and TRSM interpretations with given maximum allowed theoretical cross sections
 - exclude region $m_x = [400-600]$ GeV and $m_y = [90-300]$ GeV for NMSSM (<u>TWiki</u>)
 - exclude region $m_x = [300-500]$ GeV and $m_y = [90-150]$ GeV for TRSM (<u>TWiki</u>)

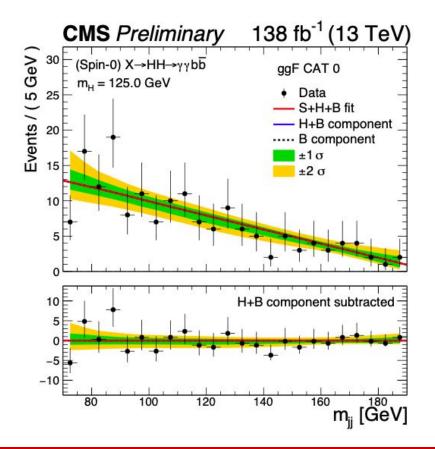

Summary

- Search for resonance X, decaying to two spin-0 bosons, in γybb final state is presented using CMS Run-2 data with m_X <= 1 TeV

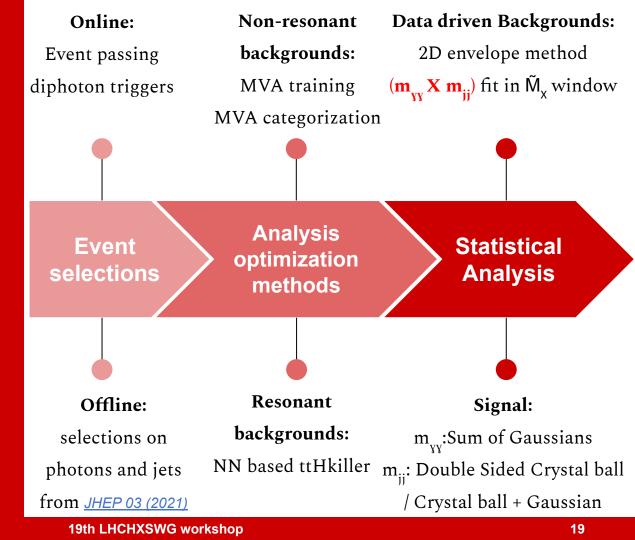
- Explore asymmetric X→ HY (first time) decay modes with m_Y <= 800 GeV
- Model independent results are shown; 1-2% systematic impact
 - Observe highest excess at $m_X = 650 \text{ GeV}$ and $m_Y = 90 \text{ GeV}$
 - NMSSM and TRSM interpretations are made which partially exclude allowed mass regions

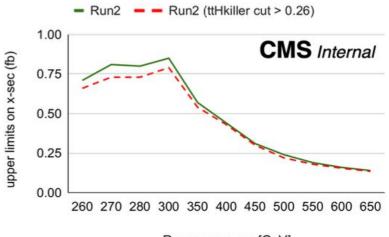
Backup


_ _ _


Results: $X \rightarrow HH$

- Left plot (spin-0): For $\Lambda_R = 3$ TeV, excludes mass up to 1 TeV; For $\Lambda_R = 6$ TeV, excludes mass up to 600 GeV
- **Right plot** (spin-2): $\kappa/M_{pl} = 0.5$, excludes resonance mass upto 850 GeV

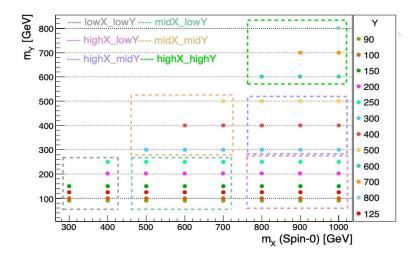

S + B fit for $X \rightarrow HH$


Analysis Strategy

Lata Panwar

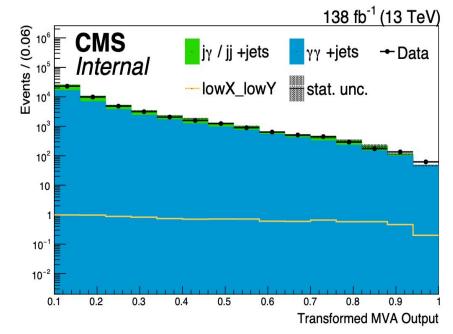
Selection on ttHKiller discriminant

- Resonant background are single Higgs process which have similar diphoton distribution peaking around m_H
- Contamination is higher only for m_x < 600 GeV; ttH contribution dominates
 - Simply neglect for higher masses
- Apply a selection on NN-based ttHkiller variable
- Order of magnitude for sensitivity improvement with $m_{\chi} < 600$ GeV is up to 10%.

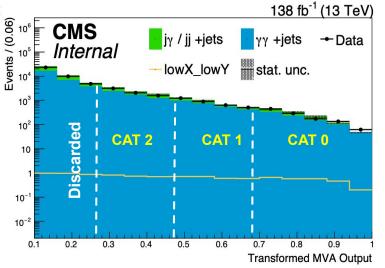

Resnance mass [GeV]

BDT Classifier

- Using XGBoost + Scikit-learn to train multiclass BDT classifier to discriminate signal from non-resonant backgrounds (in 6 different X-Y mass ranges in m_X:m_Y 2D plane)
 Signal: Resonant X → YH → bbyy (Spin0)
 Non-resonant Background: SM multijet process with prompt photons⇒
 yy+Jets and y+Jets
- Use three set of input variables
- 1) Kinematic distributions which discriminate signal from background
- 2) Object identification variables to reject fake contribution
- 3) Energy resolution variables



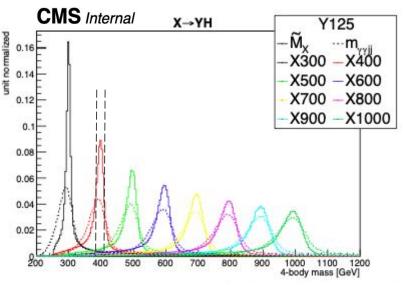
BDT performance

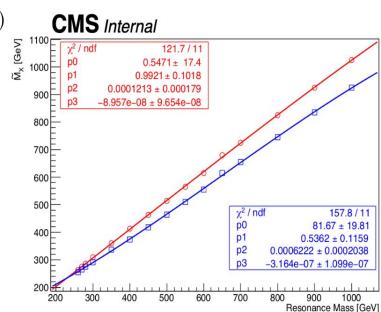

- Table shows the AUC from ROC
- As we tend to higher masses, training performance improves within same m_y range⇒ performance gets improved as

kinematics gets more discriminative

Mass Range	۷۷+jets (AUC)	γ+jets(AUC)	
lowX_lowY	0.9602	0.9744	
midX_lowY	0.9896	0.9934	
highX_lowY	0.9971	0.9981	
midX_midY	0.9849	0.9930	
highX_midY	0.9958	0.9978	
highX_highY	0.9871	0.9956	

MVA Categorization


- Categorization using MC simulations samples
- For boundary optimization ROOT Minuit package is used with MIGRAD minimizer
 - a. uses <u>Punzi FOM</u> (S_{eff}/(1+ \sqrt{B})) as input function
- Constrain background statistics have robust background modeling


Optimized MVA categories

mass range & category	lowX_lowY	midX_lowY	highX_lowY	midX_midY	highX_midY	highX₋highY
CAT2	[0.174, 0.329]	[0.213, 0.401]	[0.215, 0.304]	[0.180, 0.352]	[0.177, 0.239]	[0.129, 0.286]
CAT1	[0.329, 0.627]	[0.401, 0.550]	[0.304, 0.500]	[0.352, 0.600]	[0.239, 0.350]	[0.286, 0.400]
CAT0	[0.627, 1.000]	[0.550, 1.000]	[0.500, 1.000]	[0.600, 1.000]	[0.350, 1.000]	[0.400, 1.000]

$\tilde{M}_{\rm x}$ Window Selection

- Selection on four-body mass $\tilde{M}_{x} = (m_{jjyy} m_{jj} m_{yy} + m_{H} + m_{Y,H})$
 - \tilde{M}_{x} results better resolution (30-90%) w.r.t m_{jiyy}
- A Tight \tilde{M}_x helps to enhance signal to background ratio
- It also helps to suppress single Higgs contribution (<1%)

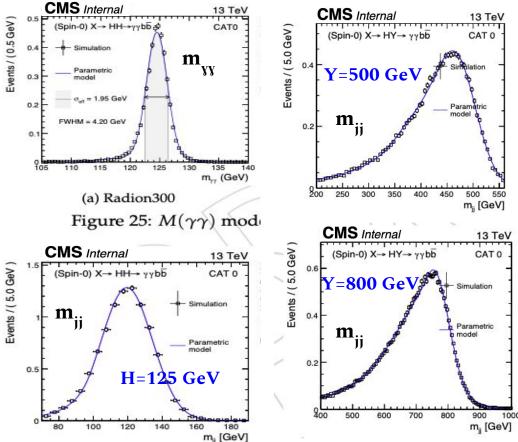
Systematic Uncertainty

Mostly standard $H \rightarrow \gamma\gamma$ systematics with jet systematics and theoretical systematics

- Preselection SF
- Triggers
- BR
- Luminosity
- **PS / UE**
- PDF and QCDscale
- Photons
- photon σ_E/E
- electron veto SF
- JEC and JER
- b-tagging SF
- HEM
- L1-prefiring

We check impact in all six mass ranges which modify limits 1-2%

Highest impact from QCD scale and b tagging systematics for all masses


• Other systematics contribution < 1%

Signal Model

- sum of gaussian functions is used (upto 5)
- number of gaussian function is decided from F-test
- m_{jj}:
 - DoubleCrystalBall (DCB)
 function or Sum of CB and
 Gaussian
 - Choose the best fit with best chi2

NOTE: m_{ii} plots are shown for all three bins

Lata Panwar

Comparison of the resonant analyses ATLAS vs CMS

- Similar performance of γ reco+ID and b jet ID
- Similar analyses preselections

	ATLAS	CMS
Interpretations	• Spin-0 X \rightarrow HH \rightarrow bbyy	 Spin0/2 X→ HH→ bbyy NMSSM X→ YH → bbyy
ttH rejections	 ele and muon veto and < 6 jets 	 ttH vs HH→ bbyy DNN
MVA approach	 BDT to reject ttγγ & γ(γ)+jets BDT to reject single H 	 BDT to reject y(y)+jets
BDT training	 Inclusive to all m_x points Signal m_x reweighted to match continuum bkg shape 	 Separate in six mass region defined by boost factor m_x/(m_x + m_y)
Categories	1 BDT-based category	3 BDT-based category
Signal extraction	• 1D m _{yy} fit	• 2D m _{yy} :m _{jj} fit